High Impedance Fault Detection using LVQ Neural Networks

Abhishek Bansal and G. N. Pillai

Abstract—This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.

Keywords—Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.

I. INTRODUCTION

HIGH impedance faults (HIFs) on distribution systems create unique challenges for the protection engineer. HIFs that occur do not produce enough fault current detectable by conventional overcurrent relays or fuses [1]. A high impedance ground fault results when a primary conductor makes unwanted electrical contact with a road surface, sidewalk, tree limb, or with some other surface, or object which restricts the flow of fault current to a level below that reliably detectable by conventional overcurrent devices [1]. These faults are characterized by intermittent arc-type nature and very low current rich in low harmonic content and high frequency noise spectra. The failure of HIF detection may lead to potential hazards to human beings and potential fire [2]. Therefore, from both public safety and operational reliability viewpoints, detection of HIFs is critically important.

Engineering efforts for the development of a reliable method for the detection of high impedance arc-type faults led during the last two decades to important progress in understanding the electrical characteristics of these faults and in the evaluation of several detection concepts [3]. Various techniques of fault detection encompass fractal techniques [4], expert systems [5], neural networks [6-8] and dominant harmonic vectors [9, 10]. The use of high frequency harmonics is not feasible in practical relay because of the filtering by the substation current transformers. Other methods that try to reduce the limitation of frequency domain methods include Kalman filtering [11] and wavelet transform based methods [2, 12]. Among many techniques proposed by different research groups, use of information contained in the low frequency spectral behavior, in terms of both magnitude and phase, seems to be the most promising approach for the next steps which will bring the industry closer to the realization of a fully operation HIF detector [13].

In [14], a novel time domain HIF detection scheme based on low frequency harmonic excursion patterns and phase portraits is used to detect the high impedance arc-type faults on a radial distribution system. In this paper we propose a novel approach of employing learning vector quantization (LVQ) neural networks to detect HIFs in radial distribution system. In the proposed scheme, the reference vectors are set to the locations mostly matching the probability distributions of training vectors to improve the learning characteristics of LVQ. The improved learning characteristics ensure more accurate classification results. The sample system studied in this paper is a 25 kV power distribution network studied in [14].

The paper is organized as follows. Section 2 deals with a brief review of the system description and fault simulation method. Section 3 provides a basic description of the employed LVQ networks. Section 4 reports the case study and discusses the simulation results. Section 5 concludes the paper with some general remarks on the idea of optimizing neural networks.

II. SYSTEM DESCRIPTION AND FAULT SIMULATION

Single line diagram of the sample radial distribution system [14] is shown in Fig. 1. The distribution line is represented by lumped passive elements without mutual coupling. Constant impedance load is assumed. Fig. 2 represents the equivalent per phase circuit during fault with nonlinear arcing fault resistance R_f. The training data is obtained by applying nonlinear and linear faults to the circuit model at different fault locations x. The system parameters and nonlinear arc model are given in the Appendix.

Using Fig. 2, following nodal equations can be written in s-domain. All variables are in s-domain and (s) is dropped for domain. The variables in s-domain are shown in capital letters. For linear faults, the fault resistance is not varying as shown in Appendix.
Using the above equations, a MATLAB/SIMULINK simulation model is made as shown in Fig. 3. The radial system is subjected to an Arc type fault at different locations from \(x=0 \) to full feeder length. For linear and nonlinear HIFs, the value of fault impedance \(R_f \) is given in the Appendix.

III. LEARNING VECTOR QUANTIZATION (LVQ) NEURAL NETWORKS

LVQ networks are supervised versions of vector quantization for adaptive pattern classification [15]. The method illustrates how an unsupervised learning mechanism can be adapted to solve supervised learning tasks in which class membership is known for every training pattern. Vector quantization is a technique whereby the input space is divided into a number of distinct regions, and for each region a reconstruction vector is defined [16]. When presented with a new input \(x \), a vector quantizer first determines the region in which the vector lies. Then the quantizer outputs an encoded version of the reconstruction vector \(w_i \) representing that particular region containing \(x \). The set of all possible reconstruction vectors \(w_i \) is usually called the codebook of the quantizer. When the Euclidean distance similarity measure is used to decide on the region to which the input \(x \) belongs, the quantizer is called a Voronoi quantizer [16].

In LVQ networks, class information is used to fine-tune the reconstruction vectors in a Voronoi quantizer so as to improve the quality of the classifier decision regions [17]. In classification problems, it is the decision surface between classes and not the inside of the class distribution that should be described most accurately. The quantizer process can be easily adapted to optimize placement of decision surface between different classes. The method starts with the calibration of a trained Voronoi quantizer using a set of labeled input samples. Each \(w_i \) is then labeled according to the majority of classes represented among those samples which have been assigned to \(w_i \). Here the distribution of the calibration samples to the various classes, as well as the relative numbers of the \(w_i \) assigned to these classes, must comply with the priori probabilities of the classes, if such
probabilities are known [15]. The tuning of the decision surfaces is done by rewarding correct classifications and punishing incorrect ones. When training pattern x^k from class c_j is presented to the network, let the closest reconstruction w_i belong to class c_i. Then only vector w_i is updated according to the following supervised rule

$$\Delta w_i = \begin{cases} +\eta^k (x^k - w_i) & \text{if } c_j = c_i \\ -\eta^k (x^k - w_i) & \text{if } c_j \neq c_i \end{cases}$$

(2)

where the learning rate η^k is assumed to be a monotonically decreasing function of the number of iterations k. The decreasing learning rate allows the network to converge to a state in which the weight vectors are stable. The primary effect of equation (2) is to minimize the number of misclassifications. At the same time, the vectors w_i are pulled away from the zones of class overlap where misclassifications persist. The algorithm described here is referred to as LVQ1 learning rule.

A. Feature extraction

The radial distribution system is subjected to an arc type fault at different locations by varying x, measured from the substation bus. The voltage and current signals at feeder terminals v_1 and i_1 are used as detection signals as shown in Fig. 4. The instantaneous values of these detection signals are captured and transformed into frequency domain using one cycle Fast Fourier Transform FFT. The FFT-harmonic vectors v_3, i_3, v_5, and i_5 are processed to obtain feature vectors and are used to train the LVQ network.

![Fig. 4 Feature vector extraction](image1)

Many cases of linear and nonlinear faults are simulated by varying the fault locations, source impedances and fault resistance. Equal numbers of linear and nonlinear fault cases are simulated. The obtained data is cast into a classification problem by associating half of the samples into linear and the other half into nonlinear classes.

B. LVQ network Configuration

The input nodes of the LVQ neural network are v_3, i_3, v_5, and i_5. The output layer consists of two linear neurons representing the linear and nonlinear fault cases. This layer represents the target classes. The first layer is a competitive layer representing the prototype weight vectors. The prototype weight vectors classify the input vectors into subclasses. Both the competitive and linear layers have one neuron per (sub or target) class. The structure of the neural network is 4-10-2 assuming 10 subclasses. The LVQ1 learning rule is used for training the network.

IV. SIMULATION RESULTS

A set of 220 patterns obtained by the proposed system using the Matlab toolboxes is used for training the network. 100 additional samples are generated for testing. Initial learning rate of 0.15 is selected for training the LVQ network. Repeated trials of the program show that this choice of learning rate is very helpful for faster convergence. Initially, reference vectors are randomly chosen for training the network. To improve the learning characteristics of the network, the reference vectors are set to the locations matching the probability distribution of training vectors. This is done by dividing the training data into different classes and calculating the mean of the samples in these classes. Network structures with different number of reference vectors (subclasses) are tested.

Fig. 5 shows the training error as a function of no. of epochs with random initial vectors. The initial learning rate is 0.15 and the number of subclasses is 10. It is clearly seen from the figure that substantial training error exists even after 150 epochs and needs to be further minimized.

In Fig. 6, the initial vectors are chosen in consistency with the probability distribution of the input features of the training samples. The initial learning rate and number of subclasses are same as in Fig. 5. Training error reduces to zero after 43 epochs. Thus by properly selecting the initial reference vectors, the training error in an LVQ network can be reduced significantly.

Table 1 shows the training and testing errors when the number of subclasses is changed from 8 to 16. When the number of subclasses is 10, the LVQ network gives better performance with both random and selected subclasses. The
ability of the network to classify the samples is improved by the location of the reference vectors, topology of the network and initial learning constant.

The same data set is used to train a multilayer perceptron (MLP) with backpropagation algorithm [7-8]. The architecture used for simulation consists of two hidden layers and one output layer. The output layer consists of one neuron whose output is zero or one for discrimination between linear and nonlinear faults. In the hidden layers, the neurons in the first hidden layer and second hidden layer can be varied to get optimum results. The transfer function in the neurons is log-sigmoid because the output of this function ranges from 0 to 1 which matches the output of the linear fault cases (‘0’) and nonlinear fault cases (‘1’). The training algorithm used is the supervised Levenberg-Marquardt backpropagation implemented in Matlab’s ANN toolbox. A training error of 1.67% and testing error of 5.0% was obtained when there were 8 neurons in the first hidden layer and 4 neurons in second hidden layer. But the algorithm took 1000 epochs to reach this training error. The training error can be further reduced by selecting more neurons in the hidden layers.

From the results, it can be seen that an LVQ network has an inherent ability to classify more rapidly than the corresponding MLP with backpropagation algorithm. Further, architecture of MLP network with backpropagation algorithm is much more complex than corresponding LVQ network to obtain same rate of accuracy.

APPENDIX

(a) **AC System**

\[V_S = \frac{25}{\sqrt{3}} \sin(314t), \quad R_S = 0.7 \Omega, \quad L_S = 7mH \]

(b) **HIF Fault Model**

1. **Linear HIF fault**

\[R_f = 30 \text{ to } 100\Omega \]
\[L_f = 1 \text{ to } 5mH \]

2. **Nonlinear (Arc-type) HIF fault**
\[R_f = R_{f0} + R_f \left(\frac{i_f}{i_{f0}} \right)^\beta \]
\[R_{f0} = 20 \Omega, \quad R_f = 10 \text{ to } 100 \Omega \]
\[L_f = 1 \text{ to } 5 \text{mH} \]
\[i_{f0} = 70, \quad \alpha = 0.6, \quad \beta = 2 \]

(c) Transmission line
Length \(l = 32 \text{ km} \)
\[R = 0.25 \Omega/km, \quad L = 0.9947 \mu H/km, \quad C = 0.01117 \mu F/km \]

(d) Load Parameters
\[R_f = 180 \Omega, \quad L_f = 0.2 \mu H \]

REFERENCES

Abhishek Bansal received his B.Tech. degree in Electrical Engineering from Indian Institute of Technology (IIT) Roorkee, Roorkee, India, in May 2007.