Properties of Al₂O₃ – hBN Composites

K. Broniszewski, J. Woźniak, K. Czechowski, P. Orłowski, A. Olszyna

Abstract—Alumina matrix composites with addition of hexagonal boron nitride (hBN), acting as solid lubricant, were produced. Main purpose of solid lubricants is to dispose the necessity of using cooling lubricants in machining process. Hot pressing was used as a consolidating process for Al₂O₃-x wt.% hBN (x=1/2, 5/5, 7,5/10) composites. Properties of sinters such as relative density, hardness, Young’s modulus and fracture toughness were examined. Obtained samples characterize by high relative density. Hardness and fracture toughness values allow the use of alumina – hBN composites for machining steels even in hardened condition. However it was observed that high weight content of hBN can negatively influence the mechanical properties of composites.

Keywords—Alumina, Composites, Hexagonal boron nitride, Machining

I. INTRODUCTION

CONSTANTLY developing industry requires introduction of new technologies. Machining is one of the most important industry branch that needs to respond to constant changes in automotive, aerospace and many other industries. Creating new materials, that characterize e.g. with improved hardness, reduced weight, higher fracture toughness, requires a way to machine them to desired shape. Cutting tools edges must have a specific properties in order to machine a chosen material. The main parameter is difference in hardness between cutting tool edge and machined material. Higher difference in favor of cutting tool edge can decrease wear of such tool in the machining process. In addition to hardness a cutting tool can’t crack or chip in the process [1]–[3]. Machining process performed using that cutting tool edge must also be environmentally safe.

The vast majority of machining processes involves the use of cooling lubricants which are additional costs to the process. They are not friendly to environment and can even be hazardous for operating personnel. New concept that excludes the use of cooling lubricants involves a group of materials called solid lubricants. The solid lubricants are materials of structure very similar to graphite. Structure of used in this work hexagonal boron nitride is shown in Fig. 1. The atoms in planes are connected with strong chemical bonds and successive planes are connected with weak Van der Walls bonds. Such structure provides a possibility to slide successive planes with use of small strain even in room temperature [4]–[6].

Fig. 1 Structure of hexagonal boron nitride (hBN)

Hexagonal boron nitride possesses high melting point (~2800K) which is very important parameter for material used for cutting tool edge. Temperature at the contact area between tool and machined material can reach up to 1000°C. It is very important that hBN stays in solid state in whole machining process.

II. EXPERIMENT

Powder substrates used in this work were: commercial one-phase α-Al₂O₃ powder (chemical purity of 99.99%) and commercial one-phase hBN powder (chemical purity of 99.8%). Alumina powder characterize with mean particles size of 135±35μm and irregular shape Fig. 2. Hexagonal boron nitride powder characterize with mean particles size of 5,63±3,36μm an flake shape Fig. 3. Powders substrates were wet blended in isopropyl alcohol suspencion for 24h at attritor type mill. Powders mixtures were dried for 24h at 50°C and then hot pressed at 1350°C for 1h under pressure of 20MPa in argon atmosphere. Sinters production process scheme is presented in Fig. 4. As the result of sintering Al₂O₃-x wt.% hBN composites were created, where x = 1/2, 5/5, 7/5/10.
Sinters have been subjected to grinding and polishing. Final polishing was performed on 1µm diamond suspension. Density and porosity of specimens were examined by Archimedes's method and additionally with use of helium pycnometer. Hardness and fracture toughness were measured with use of indentation method under 98,1N load. Young modulus of composites was measured with use of ultrasonic method.

III. Results

Obtained sinters characterize by the presence of 2 phases: α-
Al₂O₃ and hexagonal boron nitride as shows the exemplary
diffraction Fig. 5. Produced Al₂O₃-x%wt.hBN composites
possess high relative density Fig. 6. Increase of hBN addition
in alumina matrix increases density of obtained composites.
Composites with 7,5%/10% hBN have near theoretical density.
Hexagonal boron nitride is homogenously distributed in alumina matrix in all produced composites. Exemplary microstructure of $\text{Al}_2\text{O}_3\cdot7.5\%\text{wt. hBN}$ is shown in Fig. 7.

Hardness of obtained sinters is below 1100HV10 value. As expected, addition of low hardness hexagonal boron nitride in alumina matrix causes reduction of $\text{Al}_2\text{O}_3\cdot\text{x}\%\text{wt. hBN}$ composites hardness (Fig. 8). Hardness decreases with increase of hBN content to value of 534 ± 74 HV10 for specimen containing 10%wt.hBN. It must be noted that sinter with 1%wt.hBN, which possess lower density than other sinters, can have his hardness undervalued compared to fully compacted sample. It was observed, that under a indenter load surface of sinters containing 7.5%wt. and 10%wt. hBN is cracking/chipping around indenter. It interferes with accurate evaluation of indentation edges. Such occurrence was observed also for $\text{Al}_2\text{O}_3\cdot5\%\text{wt. hBN}$ but at a lower degree.

Examined values of Young’s modulus for produced alumina – hBN composites are close to their theoretical values received from rule of mixtures. The exception is sample with 1%wt.hBN in which case examined value is definitely lower than expected.

Fracture toughness for produced composites was also examined. Results of obtained K_{IC} coefficient is shown in Fig. 10. Fracture toughness values of samples decrease with increasing fraction of hexagonal boron nitride in alumina matrix. Because of low K_{IC} coefficient of hBN such tendency is expected. $\text{Al}_2\text{O}_3\cdot2.5\%\text{wt. hBN}$ composite characterize by very high standard deviation and therefore real fracture toughness of this sample is uncertain. It is very likely that this K_{IC} value match a previous mentioned tendency. In calculation of K_{IC} values, a Niihara, Morena and Hasselman equation was used [7].

Table I summarizes results of density, hardness, Young’s modulus and fracture toughness for all produced samples.
TABLE I

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Relative density – Archimedes [%]</th>
<th>Relative density – Pycnometer [%]</th>
<th>Hardness [HV10]</th>
<th>Young modulus [GPa]</th>
<th>K_C [MPa·m$^{1/2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$-1%wt.hBN</td>
<td>96.7</td>
<td>97.6</td>
<td>1067±73</td>
<td>342±10</td>
<td>5.15±0.34</td>
</tr>
<tr>
<td>Al$_2$O$_3$-2.5%wt.hBN</td>
<td>97.9</td>
<td>98.0</td>
<td>1099±31</td>
<td>411±32</td>
<td>3.87±0.89</td>
</tr>
<tr>
<td>Al$_2$O$_3$-5%wt.hBN</td>
<td>98.9</td>
<td>98.1</td>
<td>852±52</td>
<td>376±27</td>
<td>4.31±0.19</td>
</tr>
<tr>
<td>Al$_2$O$_3$-7.5%wt.hBN</td>
<td>99.9</td>
<td>99.9</td>
<td>764±30</td>
<td>379±26</td>
<td>4.07±0.37</td>
</tr>
<tr>
<td>Al$_2$O$_3$-10%wt.hBN</td>
<td>99.9</td>
<td>99.9</td>
<td>534±74</td>
<td>375±4</td>
<td>3.51±0.27</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

Financial support from the European Union Innovative Programme (Grant No. UDA-POIG.01.03.01-12-024/08) is gratefully acknowledged.

REFERENCES

