pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays

Zixin Liu, Shu Lü, Shouming Zhong, and Mao Ye

Abstract—This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integro-differential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.

Keywords—pth Moment Exponential synchronization; Stochastic; Neural networks; Mixed time delays.

I. INTRODUCTION

Since the seminal works of Pecora and Carroll [1], [2], chaos synchronization has been intensively researched because of its potential applications in various fields such as secure communication, biological systems, information science, and so on. On the other hand, delayed neural networks, as a kind of special complex dynamical systems, have also been found to exhibit unpredictable behaviors such as periodic oscillations, bifurcation and attractors. The study on chaos synchronization of delayed neural networks have also been proposed (see [3]-[13]).

The idea of synchronization is to construct a response system and feedback controller for a given chaotic system such that the error system can be stable in the trivial solution. As a generalized form of mean square exponential stability, pth moment exponential stability has been received considerable attention in recent years. In Ref [14], the authors investigated the exponential stability in pth mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations with constant time delay. In Ref [15], Luo improved the corresponding results. By establishing an L-operator inequality and using the property of M-cone, Yang and Xu [16] derived some pth moment exponentially stable criteria for a class of general impulsive stochastic differential equations with constant delay. Based on the results of Mao [17], [18], Randjelović and Janković [19] obtained some pth moment exponential stability criteria of neutral stochastic functional differential equations. By using the method of variation parameter and inequality technique, Sun and Cao [20] generalized the results obtained in [21] from mean square exponential stability to pth moment exponential stability for a class of stochastic recurrent neural networks with time-varying delays. For discarding the strict constraint of time delay, Huang and He [22] established an improved criteria via the technique of Halanay-type inequality. On the other hand, the study on p-Moment stability of stochastic differential equations with Markovian jumps are also received attention in recent years (see [23]-[25]).

However, to the best of our knowledge, few authors have considered the problem of pth moment exponential synchronization of stochastic recurrent neural networks (RNNs) with mixed delays. Motivated by the above discussions, the main aim of this paper is to study pth moment exponential synchronization of a class of stochastic RNNs with discrete and distributed time delays. Based on Lyapunov stable theorem, by establishing a new integro-differential inequality, and using stochastic analysis technique, some sufficient conditions are derived to guarantee pth moment exponential synchronization of the given derive-response systems. These results obtained in our paper generalize and improve some existing results, which will be shown by one simulation example later.

The rest of the paper is arranged as follows. In Section 2, related dynamical systems with discrete and distribute time delays will be presented, then some necessary notations, assumptions, lemma and definition will be given. The pth moment exponential synchronization conditions will be given in Section 3. One simulation example will be provided in Section 4 to demonstrate the validity of our results. Conclusions are drawn in section 5.

II. PRELIMINARIES

Notations. The notations are used in our paper except where otherwise specified. $E(\cdot)$ stands for the mathematical expectation operator; $|\cdot|$ denotes the Euclidean norm; $\|\cdot\|$ denotes a vector or a matrix norm; The notation $\|\cdot\|_P$ is used to denote a vector norm defined by $\|\cdot\|_P = \sum_{i=1}^{n} |x_i|^p$; $\|\cdot\|_{\Delta} = \sup_{-\infty \leq \tau \leq 0} |\cdot|_P$. R, R^+, R^n are real, positive real and n-dimension real number sets respectively, I is identity matrix, L denotes the well-known L-operator given by the Itô’s formula.

In this paper, we consider the following chaotic neural networks

$$
\begin{align*}
&dx_i(t) = [-c_i x_i(t) + \sum_{j=1}^{n} a_{ij} f_j(x_j(t)) + \sum_{j=1}^{n} b_{ij} f_j(x_j(t - \tau(t))) \\
&+ \sum_{j=1}^{n} d_{ij} \int_{-\infty}^{t} k_{ij}(t-s) f_j(x_j(s)) ds] dt,
t > 0 \\
x_i(t) = \phi_i(t),i = 1,2,\cdots,n \text{ } t \leq 0.
\end{align*}
$$

(1)
where \(x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \) is the state vector associated with the neurons; \(c_i > 0 \) represents the rate with which the \(i \)th unit will reset its potential to the resting state in isolation when disconnected from the network and the external stochastic perturbations; \(a_{ij} \), \(b_{ij} \) and \(d_{ij} \) represent the connection weight and the delayed connection weight, respectively; \(f_1 \) is activation function, \(f(x(t)) = (f_1(x_1(t)), f_2(x_2(t)), \ldots, f_n(x_n(t)))^T \). \(\tau > 0 \) is transmission delay, which is bounded and the up-bound is \(\tau, k_i(s) \geq 0 \) is the kernel function, \(\phi_i(t) \) is continuous initial function.

In order to synchronize system (1) via feedback controller, we introduce the respond system from the directional nonlinear coupling approach as follows:

\[
\begin{align*}
 d\gamma(t) &= [-c_i\gamma_i(t) + \sum_{j=1}^{n} a_{ij} f_j(y_j(t)) + \sum_{j=1}^{n} b_{ij} \phi_j(y_j(t-	au(t)))] \\
 &+ \sum_{j=1}^{n} d_{ij} \int_{t-	au(t)}^{t} k_i(s) \gamma_j(s) ds dt \ \\
 &+ \sum_{j=1}^{n} \sigma_{ij}(t, e_j(t, e_j(t-	au(t)))) d\omega_j(t), t > 0, \\
 \gamma_i(t) &= \phi_i(t), i, j = 1, 2, \ldots, n, t \leq 0.
\end{align*}
\]

where \(\omega_j(t) \) is a standard Brown motion defined on a complete probability space \((\Omega, F, \mathbb{P})\) with a natural filtration \(F_t \). If \(F_t \) is a \((\sigma, \mathbb{P})\) satisfies \((0 \leq s \leq t) \) and \(\sigma_{ij} \) is the diffusion coefficient, \(u_i(t) = \sum_{j=1}^{n} m_{ij}(f_j(y_j(t)) - f_j(x_j(t))) + \sum_{j=1}^{n} n_{ij}(f_j(y_j(t-	au(t))) - f_j(x_j(t-	au(t)))) \). \(e_j(t) = y_j(t) - x_j(t), \phi_i(t) \) is continuous initial function.

From Eq (1) and (2), we can get the following error system

\[
\begin{align*}
 d\varepsilon_i(t) &= [-c_i\varepsilon_i(t) + \sum_{j=1}^{n} (a_{ij} + m_{ij}) \gamma_j(y_j(t)) \\
 &+ \sum_{j=1}^{n} (b_{ij} + n_{ij}) \phi_j(y_j(t-	au(t)))] \\
 &+ \sum_{j=1}^{n} d_{ij} \int_{t-	au(t)}^{t} k_i(s) \gamma_j(s) ds dt \ \\
 &+ \sum_{j=1}^{n} \sigma_{ij}(t, e_j(t, e_j(t-	au(t)))) d\omega_j(t), t > 0, \\
 \varepsilon_i(t) &= \phi_i(t), i, j = 1, 2, \ldots, n, t \leq 0.
\end{align*}
\]

where \(\gamma_j(y_j(t)) = f_j(y_j(t)) - f_j(x_j(t)), \phi_j(y_j(t-	au(t))) = f_j(y_j(t-	au(t))) - f_j(x_j(t-	au(t))), \phi_i(t) = \phi_i(t) - \phi_i(t) \).

Throughout this paper, the following standard hypothesis are needed

\[
\begin{align*}
 (A_1) & |f_i(u) - f_i(v)| \leq l_i |u - v| \quad l_i > 0, |u|, |v| \leq R. \\
 (A_2) & \sum_{j=1}^{n} a_{ij} \sigma_j^2(e_j(t), e_j(t-	au(t))) \leq \sum_{j=1}^{n} a_{ij} \mu_j \gamma_j^2(t) \quad \sum_{j=1}^{n} a_{ij} \mu_j \gamma_j^2(t) \in R^+ \\
 (A_3) & \int_{0}^{\infty} e^{\varepsilon} \kappa_i(s) ds < \infty, \int_{0}^{\infty} \kappa_i(s) ds = 1 \quad \varepsilon > 0 \quad \text{is a constant scalar}.
\end{align*}
\]

Remark 1. In previous publications, the variable time delay \(\tau(t) \) is always required to be not only positive and bounded but also differentiable and derivative bounded. In this study, we only require it to be positive and bounded. It can be derivative unbounded, and even can be non-differentiable.

For further discussion, we introduce the following definition and lemmas.

Definition 1. System (1) and (2) are said to be \(p \)th moment exponentially synchronized if for a suitably designed feedback controller, there exist a pair of positive constants \(\lambda, \alpha, \sigma \) such that

\[
E[|x(t)|^p] \leq \alpha E[|\gamma|^p] e^{-\lambda(t-t_0)}, \quad t \geq 0,
\]

hold for \(\gamma \in L_{t_0}^{\infty}([0, \tau], \mathbb{R}^n) \), where \(e(\tau) = (e_1(t), e_2(t), \ldots, e_n(t))^T \), \(\psi(\tau) = (\psi_1(t), \psi_2(t), \ldots, \psi_n(t))^T \). Especially when \(p = 2 \) they are called to be exponentially synchronized in mean square.

Lemma 1. (Mao [26]) Let \(p \geq 2 \) and \(a > 0, b > 0 \), then

\[
a^{p-1}b \leq \left(\frac{(p-1)a^p}{p} + \frac{b^p}{p} \right),
\]

and

\[
a^{p-2}b^2 \leq \left(\frac{(p-2)a^p}{p} + \frac{2b^p}{p} \right).
\]

III. MAIN RESULTS

In this section, firstly, we will generalize an integro-differential inequality established by Xu and Wei (see [27]) from distribute delay to mixed delays, then some sufficient conditions will be derived to ensure the \(p \)th moment exponential stability for the error system.

Theorem 1 Let \(P = (p_{ij})_{n \times n} \) and \(p_{ij} \geq 0 \) for \(i \neq j \), \(H^{(r)} = (h_{ij}^{(r)})_{n \times n}, r = 1, 2, \ldots, n, h_{ij}^{(r)} \geq 0, \tau_{ij}(t) \geq 0, \tau_r = \max_{\tau_{ij}(t)} \) is a bounded constant, \(K(i, j) = (k_{ij})_{n \times n} \) are piecewise continuous and satisfy

\[
(A_3') \quad \int_{0}^{\infty} e^{\varepsilon} k_{ij}(s) ds < \infty.
\]

where \(\varepsilon > 0 \) is a constant scalar. Denote \(K = (k_{ij})_{n \times n} = (\int_{0}^{\infty} k_{ij}(s) ds)_{n \times n} \) and let \(D = -P + K + \sum_{r=1}^{n} H^{(r)} \) be a nonsingular \(M \)-matrix, \(u(t) = (u_1(t), u_2(t), \ldots, u_n(t))^T \) \(\in \mathbb{C}([0, +\infty], \mathbb{R}^n) \) be a solution of the following integro-differential inequality with the initial condition \(u(t), t < 0 \)

\[
D^+ u(t) \leq P u(t) + \sum_{r=1}^{n} H^{(r)} u(t-\tau_{ij}(t)) + \int_{0}^{\infty} K(s) u(t-s) ds.
\]

Then

\[
|u(t)| \leq z e^{-\delta t}, t \geq 0,
\]

if the initial conditions satisfy

\[
|u(t)| \leq z e^{-\delta t}, t \leq 0,
\]

where \(z = (z_1, z_2, \ldots, z_n)^T \in \Omega_{\text{sg}}(D) = \{ z \in \mathbb{R}^n | Dz > 0, z > 0 \} \) and the constant \(\delta \) satisfies \(0 < \delta \leq \varepsilon \) which is determined by the following inequality

\[
(\delta I + P + \sum_{r=1}^{n} H^{(r)} e^{\tau_{ij}} + \int_{0}^{\infty} K(s) e^{\delta s} ds) z < 0.
\]
Proof. Since matrix D is a nonsingular M-matrix, in views of the property of M-matrix, there exists a vector $\xi \in \Omega_M(D)$ such that
\[
(P + K + \sum_{r=1}^{n} H^{(r)}) \zeta < 0.
\]
By using continuity and condition (A_3'), we see that inequality (6) has at least one positive solution $\delta \leq \varepsilon$.

In what follows, we first prove that for any given positive scalar $\xi > 0$ we have
\[
u_i(t) < (1 + \xi)z_i e^{-\Delta t} = y_i(t), t \geq 0, i = 1, 2, \cdots, n, \tag{7}
\]
if $u(s) \leq ze^{-\Delta s}, -\infty < s \leq 0$.

If (7) not true, then there must exist $t^* > 0$ and some integer m such that
\[
u_{m}(t^*) = y_{m}(t^*), \quad D^+ u_{m}(t^*) \geq y_{m}(t^*), \tag{8}
\]
\[
u_{l}(t) \leq y_{l}(t), -\infty < t \leq t^*, i = 1, 2, \cdots, n. \tag{9}
\]
From (4), we can get
\[
D^+ u_{m}(t^*) \leq \sum_{j=1}^{n} [p_{mj}] y_{j}(t^*) + \sum_{j=1}^{n} k_{mj}^2 e^{\delta (t^* - t_j(t))} + \sum_{j=1}^{n} k_{mj}^2 e^{\delta (t^* - t_j(t))} + \sum_{j=1}^{n} k_{mj} e^{\delta s} ds[I + (1 + \xi)z_i e^{-\Delta t}]
\]
\[
\leq \sum_{j=1}^{n} [p_{mj}] y_{j}(t^*) + \sum_{j=1}^{n} k_{mj}^2 e^{\delta (t^* - t_j(t))} + \sum_{j=1}^{n} k_{mj} e^{\delta s} ds[I + (1 + \xi)z_i e^{-\Delta t}]
\]
\[
\leq -\delta (1 + \xi)z_i e^{-\Delta t} = y_{i}(t^*), \tag{10}
\]
which contradicts with inequality (8), namely inequality (7) holds for all $t \geq 0$. On the other hand, in views of the arbitrary of ξ, we can see that inequality (5) holds, which complete the proof.

Theorem 2. Under the assumptions $(A_1) - (A_3)$, system (1) and system (2) are pth moment exponentially synchronized ($p \geq 2$), if the following conditions are satisfied
\[
(1) \quad S' = -(P' + H' + K') is a nonsingular M-matrix, where $P' = (p_{ij}')_{n \times n}, H' = (h_{ij}')_{n \times n}, K' = (k_{ij}')_{n \times n}, \quad
\]
\[
p_{ij}' = |(a_{ij} + m_{ij})l_i| + |(p - 1)c_{ij}|, i \neq j,
\]
\[
p_{ii}' = |(a_{ii} + m_{ii})l_i| + |(p - 1)c_{ii}| + \sum_{j=1}^{n} |(p - 1)c_{ij}| + \sum_{j=1}^{n} |(p - 1)c_{ij}| + \sum_{j=1}^{n} |(p - 1)c_{ij}| + \sum_{j=1}^{n} |(p - 1)c_{ij}|
\]
\[
k_{ij}' = |(b_{ij} + m_{ij})l_i| + |(p - 1)c_{ij}|, i \neq j,
\]
(2) Initial conditions satisfy
\[
E[\varepsilon_i(t)|p] \leq z_i e^{-\delta t}, i = 1, 2, \cdots, n, t \in (-\infty, 0],
\]
where $z = (z_1, z_2, \cdots, z_n)^T \in \Omega_M(S')$ and the positive scalar δ satisfies the following inequality
\[
[\delta I + P' + H'e^{\delta t} + \int_0^\infty K'(s)e^{\delta s} ds]z < 0,
\]
$K'(s) = \{|d_{ij}||l_i||k_{ij}(s)|\}_{n \times n}$.

Proof. Constructing Lyapunov functional for error system (3) as $V(e(t)) = (V_1(e_1(t)), V_2(e_2(t)), \cdots, V_n(e_n(t)))^T$, where $V_i(e_i(t)) = |e_i(t)|^p$.

By Itô’s formula and lemma 1, we have
\[
LV_i(e_i(t)) = p |e_i(t)|^{p-1} sgn(e_i(t))[-c_i e_i(t)
\]
\[
+ \sum_{j=1}^{n} (a_{ij} + m_{ij}) e_i(t)
\]
\[
+ \sum_{j=1}^{n} (b_{ij} + m_{ij}) e_i(t - \tau(t))
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
\leq -c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} p |b_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) p |e_i(t)|^{p-1} e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[
- c_i |e_i(t)|^{p} + \sum_{j=1}^{n} p |a_{ij} + m_{ij}| e_i(t)|e_i(t)|^{p-1} e_j(t)
\]
\[
+ \sum_{j=1}^{n} d_{ij} \int_0^t k_{ij}(t - s) e_i(s) ds
\]
\[
+ \frac{1}{2}p(p - 1)|e_i(t)|^{p-2} \sum_{j=1}^{n} |e_j|^{p-1} e_i(t)
\]
\[\begin{align*}
&\leq -c_p|e(t)|^p + \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||p-1||e_i(t)||^p \\
&+ |e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||(p-1)|e_i(t)||^p \\
&+ |e_j(t-t\tau)||^p + \sum_{j=1}^{n}|\partial e_j(t)|^p + \frac{(p-1)}{2}\sum_{j=1}^{n}\mu_j(p-1)|e_i(t)||^p \\
&+ 2|e_j(t)||^p + \frac{(p-1)}{2}\sum_{j=1}^{n}\nu_j||(p-2)|e_i(t)||^p + 2|e_j(t-t\tau)||^p \\
&= -c_p|e(t)||^p + \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&+ \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&= (p-1)|e(t)||^p + \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&+ \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&= \frac{(p-1)}{2}\sum_{j=1}^{n}\mu_j(p-1)|e_i(t)||^p \\
&+ \frac{(p-1)}{2}\sum_{j=1}^{n}\nu_j||(p-2)|e_i(t)||^p \\
&+ \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&+ \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j||e_j(t)||^p + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j||e_j(t-t\tau)||^p \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{-\infty}^{t} k_j(t-s)ds \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{t}^{\infty} k_j(t-s)ds \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{-\infty}^{t} k_j(t-s)ds \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{t}^{\infty} k_j(t-s)ds \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{-\infty}^{t} k_j(t-s)ds \\
&+ \sum_{j=1}^{n}|d_i||l_j||^p \int_{t}^{\infty} k_j(t-s)ds.
\end{align*}\]

That is

\[LV(e(t)) \leq iP^1V(e(t)) + H^1V(e(t-t\tau)) + \int_{-\infty}^{t} K^1V(e(s-t\tau))ds.\tag{12}\]

On the other hand, by Itô’s formula, for all \(t > 0\), we have

\[dV(e(t)) = LV(e(t))dt + \frac{dV(e(t))}{de(t)}\sigma(t, e(t), e(t-t\tau))d\omega(t).\tag{13}\]

Then for \(t > 0\), integrate both side of equation (13) from \(t\) to \(t + \Delta t\), we can obtain

\[\begin{align*}
V(e(t + \Delta t)) &= V(e(t)) + \int_{t}^{t+\Delta t} LV(e(s))ds \\
&+ \int_{t}^{t+\Delta t} \frac{dV(e(s))}{de(s)}\sigma(s, e(s), e(s-t\tau))d\omega(s).\tag{14}\n\end{align*}\]

Taking mathematical expectation of the both side of equation (14), we have

\[EV(e(t + \Delta t)) = EV(e(t)) + \int_{t}^{t+\Delta t} EV(LV(e(s)))ds.\tag{15}\]

From inequality (12), we get

\[EV(e(t + \Delta t)) - EV(e(t)) = \int_{t}^{t+\Delta t} ELV(e(s))ds \leq \int_{t}^{t+\Delta t} (P^1EV(e(s)) + H^1V(e(t-t\tau)) + \int_{-\infty}^{t} K^1e(s-t\tau))ds,\]

thus

\[D^tEV(e(t)) \leq P^1EV(e(t)) + H^1V(e(t-t\tau)) + \int_{-\infty}^{t} K^1e(s-t\tau)ds,\]

By Theorem 1, we get

\[EV(e(t)) \leq ze^{-\lambda t} \leq EV(e(0))e^{-\lambda t}, t > 0,\]

which implies that

\[EV(e(t_i)) \leq ze^{-\lambda t_i} \leq EV(e(0))e^{-\lambda t_i}, i = 1, 2, \ldots, n, t > 0.\]

Namely,

\[E|e(t_i)|^p \leq E|e(0)|^p e^{-\lambda t_i}, i = 1, 2, \ldots, n, t > 0.\]

Thus we have

\[E|e(t)|^p \leq E|\psi(0)|^p e^{-\lambda t},\]

which complete the proof.

Corollary 1. Under the assumptions (A1) \(\rightarrow\) (A3), system (1) and system (2) are mean square exponentially synchronized, if the following conditions are satisfied

\[1. S^{(1)} = -(P^{(1)} + H^{(1)} + K^{(1)})\]

is a nonsingular M-matrix, where

\[P^{(1)} = (p^{(1)}_{ij})_{n \times n}, H^{(1)} = (h^{(1)}_{ij})_{n \times n}, K^{(1)} = (k^{(1)}_{ij})_{n \times n},\]

\[p^{(1)}_{ij} = |a_{ij} + m_{ij}l_i| + \mu_i, i \neq j,\]

\[h^{(1)}_{ij} = |a_{ij} + m_{ij}l_i| + \mu_i - 2c_i + \sum_{j=1}^{n}|a_{ij} + m_{ij}l_j| + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j| + \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j| + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j| + \sum_{j=1}^{n}|d_i||l_j||^p \int_{-\infty}^{t} k_j(t-s)ds,\]

\[= |a_{ij} + m_{ij}l_i| + \mu_i.\]

(2) Initial conditions satisfy

\[E|e(t_i)|^p \leq E|e(0)|^p e^{-\lambda t_i}, i = 1, 2, \ldots, n, t \in (\infty, 0],\]

where \(z = (z_1, z_2, \ldots, z_n)^T \in \Omega_{\lambda}(S^{(1)})\) and the positive scalar \(\delta\) satisfies the following inequality

\[\delta t + P^{(1)}e^{t\delta} + \int_{0}^{t} K^{(1)}(s)e^{\delta s}ds z \leq 0,\]

\[K^{(1)}(s) = (|d_i||l_j||^p k_j(s))_{n \times n}.\]

Remark 2. When matrix \(D = (d_{ij})_{n \times n} = 0\), similar to the proof of Theorem 2, we can get the following result.

Corollary 2. Under the assumptions (A1) \(\rightarrow\) (A2), system (1) and system (2) are \(\varphi\) th moment exponentially synchronized, if the following conditions are satisfied

\[(1) S^{(2)} = -(P^{(2)} + H^{(2)})\]

is a nonsingular M-matrix, where

\[P^{(2)} = (p^{(2)}_{ij})_{n \times n}, H^{(2)} = (h^{(2)}_{ij})_{n \times n},\]

\[p^{(2)}_{ij} = |a_{ij} + m_{ij}l_i| + \mu_i, i \neq j,\]

\[h^{(2)}(\varphi) = |a_{ij} + m_{ij}l_i| + \mu_i(p-1), i \neq j,\]

\[h^{(2)}(\varphi) = |a_{ij} + m_{ij}l_i| + \mu_i(p-1) - c_i + \sum_{j=1}^{n}|a_{ij} + m_{ij}l_j| + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j| + \sum_{j=1}^{n}|(a_{ij} + m_{ij})l_j| + \sum_{j=1}^{n}|(b_{ij} + n_{ij})l_j| + \sum_{j=1}^{n}|d_i||l_j||^p \int_{-\infty}^{t} k_j(t-s)ds,\]

\[= |a_{ij} + m_{ij}l_i| + \mu_i(p-1).\]

International Scholarly and Scientific Research & Innovation 3(9) 2009 718
where \(z = (z_1, z_2, \ldots, z_n)^T \in \Omega_M(s^{(2)}) \) and the positive scalar \(\delta \) satisfies the following inequality
\[
|\delta I + P(t) + H^2(t)s^{(2)}| > 0.
\]
Similarly, in all kinds of special cases such as matrix \(B = (b_{ij})_{n \times n} = 0 \), \(p = 2 \), \(\tau(t) \) is a constant, et al., respectively, we can get the corresponding results, which are omitted here.

IV. SIMULATION EXAMPLE

In this section, one numerical example will be presented to show the validity of the main results derived above.

Example 1. Consider a chaotic neural networks (see figure 1) as system (1), the response system as system (2), and the error system (3), where
\[
C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 2.0 & -0.1 \\ -5.0 & 3.0 \end{bmatrix}, B = \begin{bmatrix} -1.5 & -0.1 \\ -0.2 & -2.5 \end{bmatrix},
\]
\[
D = \begin{bmatrix} -0.001 & 0 \\ 0 & -0.001 \end{bmatrix}, K(t) = \begin{bmatrix} e^{-t} & e^{-t} \\ e^{-t} & e^{-t} \end{bmatrix},
\]
\[
s(t, e(t), e(t-\tau)) = \begin{bmatrix} \sqrt[\tau]{e(t)} \\ \sqrt[\tau]{e(t-\tau)} \end{bmatrix} = \begin{bmatrix} \sqrt[\tau]{e(t)} \\ \sqrt[\tau]{e(t-\tau)} \end{bmatrix}.
\]
Then we have \(l_1 = l_2 = 1, \mu_1 = \mu_2 = 0.1, \nu_1 = \nu_2 = 0.1 \). Set \(p = 3 \), and if we take the controller matrix as
\[
M = (m_{ij})_{2 \times 2} = \begin{bmatrix} -2.0 & 0.1 \\ 5.0 & -3.0 \end{bmatrix}, N = (n_{ij})_{2 \times 2} = \begin{bmatrix} 1.5 & 0.1 \\ 2.0 & 2.5 \end{bmatrix}
\]

By direct calculation, we can get \(S' = \begin{bmatrix} 1.599 & -1 \\ -1 & 1.599 \end{bmatrix} \) is a M-matrix, and if the given the initial condition satisfied (2) in theorem 2, then we can see that all of the conditions in theorem 2 are satisfied, so we can say that the given drive-response system are synchronized in 3th moment exponentially. Fig 2 shows that the trajectories of the error system converge to trivial solution exponentially. When \(D = \begin{bmatrix} -0.1 & 0 \\ 0 & -0.1 \end{bmatrix} \), we get \(S' = \begin{bmatrix} 1.5 & -1 \\ -1 & 1.5 \end{bmatrix} \) is a M-matrix, the trajectory of the drive system become the form as shows in Fig 3, and the conditions in theorem 2 are also satisfied, thus we can say that the given drive-response system are synchronized in 3th moment exponentially. Fig 4 shows that the trajectories of the error system converge to trivial solution exponentially.

V. CONCLUSIONS

In this paper, we consider the \(p \)-th moment exponential synchronization problems of a class of chaotic neural networks with mixed delays, by establishing a new integro-differential inequality, some sufficient synchronization conditions have been derived. These conditions extend and improve some earlier results cited therein. Simulation example shows that our results are valid.

ACKNOWLEDGMENT

This work was supported by program for New Century Excellent Talents in University (NCET-06-0811) and the Research Fund for the Doctoral Program of Guizhou College of Finance and Economics(200702).

REFERENCES

ZiXin Liu was born in Sichuan Province, China, in 1977. He received the B.S. degree from China West Normal University, Sichuan, in 1999 and the M.S. degree from the University of Electronic Science and Technology of China (UESTC), Sichuan, in 2006, both in applied mathematics. He is currently pursuing the Ph.D. degree with UESTC. His research interests include neural networks, chaos synchronization and stochastic delay dynamic systems.

Shu Lü was born in 1963 in Jilin, China. She received B.S. degree in Mathematics Department of Northeast Normal University, Changchun, China, in 1984 and the M.S. degree from the School of mathematical statistics, China University of Technology. She is now a professor with UESTC. Her research interests include the theory and application of economics mathematics.

Shouming Zhong was born in 1955 in Sichuan, China. He received B.S. degree in applied mathematics from UESTC, Chengdu, China, in 1982. From 1984 to 1986, he studied at the Department of Mathematics in Sun Yat-sen University, Guangzhou, China. From 2005 to 2006, he was a visiting research associate with the Department of Mathematics in University of Waterloo, Waterloo, Canada. He is currently as a full professor with School of Applied Mathematics, UESTC. His current research interests include differential equations, neural networks, biomathematics and robust control. He has authored more than 80 papers in reputed journals such as the In International Journal of Systems Science, Applied Mathematics and Computation, Chaos, Solitons and Fractals, Dynamics of Continuous, Discrete and Impulsive Systems, Acta Automatica Sinica, Journal of Control Theory and Applications, Acta Electronica Sinica, Control and Decision, and Journal of Engineering Mathematics.

Mao Ye was born in September 1973, obtained his doctoral degree from the Chinese University of Hong Kong. He is serving the University of Electronic Science and Technology Computer Science and Engineering College as associate professor and has to his credit 30 papers, of which more than 15 have SCI, EI above 12. In 2006, he worked with the Ministry of Education to support the new century talents funded plans. Starting 2002.9 to date is teaching as associate professor at the electronic Department of Chengdu University of Science and Technology Computer Science and Engineering Institute. In 2005, he was engaged in blind source separation, data mining and mobile business functions of research University of Queensland in Australia. During 2005.11-2006.8 he served in Information Science and Technology College of Engineering as visiting scholars and engaged in theoretical research on high dimensional data-mining. During 1999.8-2002.7 guided doctoral student of Chinese University of Hong Kong Institute on ordinary differential in theory as well as applied research. During 1998.4-1999.729 he served the Ministry of Information Industry Institute of electronic software group as senior programmer and engaged in information and data integration software research and preparation. During 1995.9-1998.4 he studied in University of Electronic Science and Technology Department of Applied Mathematics, Master’s in the neural network convergence of theoretical research. During 1991.9-1995.7 he studied in Sichuan Normal University Department of Mathematics as an undergraduate.