Development of Transmission Line Sleeve Inspection Robot

Jae-Kyung Lee, Nam-Joon Jung, Byung-Hak Cho

Abstract—The line sleeves on power transmission line connects two conductors while the transmission line is constructing. However, the line sleeves sometimes cause transmission line break down, because the line sleeves are deteriorated and decayed by acid rain. When the transmission line is broken, the economical loss is huge. Therefore the line sleeves on power transmission lines should be inspected periodically to prevent power failure. In this paper, Korea Electric Power Research Institute reviewed several robots to inspect line status and proposes a robot to inspect line sleeve by measuring magnetic field on line sleeve. The developed inspection tool can reliably to move along transmission line and overcome several obstacles on transmission line. The developed system is also applied on power transmission line and verified the efficiency of the robot.

Keywords—Transmission line inspection, line sleeve, transmission line inspection robot, line sleeve inspection

I. INTRODUCTION

LINE sleeves, which are usually used to connect ACSR(Aluminum Conductor Steel Reinforced) cables when the lines were constructing, are consist of Aluminum sleeve, which connect the conductor parts, and steel sleeve, which used to uphold tension on cables.

However, the connected transmission line frequently breaks down due to sleeve deterioration and corrosion, and accordingly wire replacement cost is expected to increase continuously. However, inspecting line sleeves to detect faulty and deteriorated line sleeve on operating transmission line always exist working safety concerning. Moreover, the existing inspection equipment has large error and poor accuracy to determine whether a line sleeve is healthy.

Recently, because of wildfires due to worldwide climate change and acid rain due to air polluted, sleeve deterioration is highly accelerated. The line sleeve rapidly deteriorates once the initial symptoms happen, however, the initial symptoms are not able to detect with infrared thermal camera on ground or air. Therefore, needs for developing line sleeve inspection equipment development is getting increase.

Compare with the importance of line sleeve, current sleeve inspection technology is too crude. Some foreign power companies drill a hole to inspect line sleeve. To inspect transmission line, Canada’s Hydro – Québec has been developing LineScout Technology since 2000 and applied the robot on 735kV transmission line[1-4]. The Kansai power company in Japan also developed Hibot to monitor transmission line state[5].

In Korea, to prevent transmission line failures to secure power transmission reliability, KEPCO built “Reference for transmission line operation(2010.02.01)[6]” and manages eccentric degree of line sleeves by the means of measuring Mr. Young or thermal infrared camera. But, both way commonly unreliable in the aspect of accuracy, squandering money and safety of transmission line operators. Especially, Mr. Young has ±25mm error and the error changes by operator.

This paper describes a process for developing a system to measuring line sleeve eccentric degree while the operators stay in remote area. The developed system minimizes error of line sleeve and maximizes the accuracy while measuring eccentric degree. The system also diagnosis fault line sleeve in remote area to secure the operator’s safety.
II. LINE SLEEVE DETERIORATION AND INSPECTION ENVIRONMENT

A. Deterioration of Line Sleeve

Deterioration of line sleeve usually caused by large current which flows steel sleeve in line sleeve. Usually, current on transmission line flows along the ACSR conduit. However, current usually transmitted in steel sleeve on eccentric line sleeve, which might cause a huge amount of heat on steel sleeve[7].

(b) Current flow on eccentric line sleeve

Especially, eccentric line sleeve is not detected using thermal infrared camera and invisible, non-destructive inspection method required to find eccentric line sleeve.

B. Operational Environment Analysis

ACSR cables are usually used while constructing transmission line. ACSR240, ACSR330, ACSR410, ACSR 480R, ACSR480C are used for 154KV Transmission Line. And ACSR480R, ACSR480C also used on 345KV transmission line. Table 1 shows specification of transmission line cables.

In addition, several kinds of obstacles are mounted on the transmission line, the developing system should bring the inspection tool to line sleeve by overcoming those obstacles.

III. LINE SLEEVE INSPECTION DEVICE

A. Design of Line Sleeve Inspection Tool Mechanical Parts

Line sleeve inspection tool consist of two parts, moving part and inspection part. Moving part delivers the inspection part to line sleeve and overcomes the obstacles along transmission line. On the other hand, magnates and hall sensor and encoder are mounted on the inspection part to measure eccentricity of line sleeve.

(b) Repairing Sleeve

Moving part overcomes obstacles, such as S.B. Damper and Spacer, along transmission line and delivers the inspection part toward line sleeve. Two caterpillar mechanisms have adapted on the moving part to deal with rapid gradient on transmission line and move along the transmission line without being fallen even though some obstacles are exists. Figure 5 shows caterpillar adapted on the moving part.
Caterpillar has a hardness of 15 to Urethane and the center of
caterpillar has two forms of circular grooves. The inner groove
rules as to grip ACSR cables and the outer groove rules to
prevent the robot from being deviated from cable by
maximizing friction force between cable and caterpillar. Two
moving parts are connected via inspection part and
interconnection part was designed unbalanced to avoid Spacer
and S.B. Damper.

The hall sensor installed underneath of the module to capture
maximum magnetic flex. The scanning process performed twice
on each line sleeve to verify accuracy. Except measuring
magnetic flex, proximity sensors are mounted to recognize the
end of line sleeve and roller to move smoothly over the sleeve.
Servo motor also designed to lift up and down while inspection
procedure. 3 leds are displaying the status of inspection robot.

Inspection module of sleeve inspection tool measures steel
sleeve position in line sleeve. Inspection module has two
magnets, one hall sensor, one encoder roller and servo motor.
Inspection part consists of Permanent magnets, Hall sensor
and magnet circuit to detect magnetic flex which penetrates
steel sleeve cross section. Also, encoder is attached to measure
distance from line sleeve reference coordinate. Measured
intensity of magnetic flex transmitted to remote controller to
calculate eccentricity of sleeve.
B. Model of line sleeve inspection tool

To control line sleeve inspection tool, dynamic model of the tool was built using Lagrange’s method. Fig. 11 shows free body diagram of dynamic model. All rigid body are assumed as point mass to simplify the model.

As a reference moving axis, transmission line is selected x-axis and ‘x’ is distance from reference point to center of inspection tool. Mass and inertia of each part are denoted as m_1, m_2 (caterpillar), m_3 (inspection part), m_4 (controller), m_5 (weight balance) and J_1, J_2, J_3, J_4, J_5. l_1 stands for distance between caterpillar and l_2 means distance between reference of weight balance and center of inspection module.

When the inspection tool moves toward line sleeve, the moving parts are m_1, m_2, m_3, m_4 and distance vector \hat{r}_{M_1} can be described using distance x and height h. Also position vector of weight balance \hat{r}_{M_5} can be described as below.

$$\hat{r}_{M_1} = \hat{x} + \hat{y}$$
$$\hat{r}_{M_5} = (x + l_1 \sin \theta)\hat{i} + (l_2 - h + l_3 \cos \theta)\hat{j}$$

The velocity vector is described as below

$$\hat{v}_{M_1} = \hat{x}$$
$$\hat{v}_{M_5} = (x + \theta l_3 \cos \theta)\hat{i} + \theta l_3 \sin \theta \hat{j}$$

By using LaGrange’s equation, dynamic model of the inspection tool can be driven.

$$\begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} = [A]^{-1} \begin{bmatrix} -B \dot{x} -C + D \end{bmatrix}$$

$$A = \begin{bmatrix} M_1 + M_2 + M_3 + M_4 + \frac{1}{h} (J_1 + J_2) + M_5 & M_3 l_3 \cos \theta \\ M_3 l_3 \cos \theta & M_5 + M_4 l_3^2 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & \dot{\theta} l_3 \sin \theta \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 \\ -gM_3 l_3 \sin \theta \end{bmatrix}$$

$$D = \begin{bmatrix} F_x - sf_x \\ F_\theta - \dot{\theta} \end{bmatrix}$$

Control software of remote system drives each modules of inspection system and controls overall system. Control task performed on one microprocessor. Mainly the controller performs timer task to do regular control works such as motor control and input check. Digital input module has input qualifier to cancel chattering noise. Distance based ADC (Analog Digital Converter) acquires magnetic flex intensity in every 1mm to decide how far the center is eccentric from center of line sleeve. Also, the microcontroller captures encoder signal and controls servo motor to lift up and down inspection module. Fig. 12 shows software diagram of remote inspection system.

C. Control system and user interface of inspection tool

Fig. 12 Software diagram of remote inspection system

Fig. 13 User interface program

Fig. 13 shows user interface program. User interface program shows status of inspection tool and input user command such as move forward, backward, and communication control. Also Line sleeve eccentric degree is calculated and displayed on user interface program to determine whether line sleeve is eccentric.

IV. LINE SLEEVE INSPECTION DEVICE

Using developed system, actual line test performed on Sin-Okcheon substation. Single and dual line test had performed to verify obstacle overcomes. Accuracy performance test also performed with sample test line. Line test had performed on 20th Aug. 2010 on dual transmission line and the angle of dual line was more than 45° because of weight of inspection device. Moreover, the angle of
dual line was precipitous when the device moves toward the center of tower span. So, the device had failed to overcome S.B. Damper on dual line whereas the device had succeeded to overcome obstacles on single line.

(a) Dual line test (b) Single line test

Fig. 14 Actual line test on Sin-Okcheon Substation

1) Normal: \(\frac{(L_1+L_2)}{2} \leq \text{Reference point} \)
2) Fault: \(\frac{(L_1+L_2)}{2} > \text{Reference point} \)

Fig. 15 Reference of normal & faulty line sleeve

| Normal | Allowable | Limit
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L1+L2</td>
</tr>
<tr>
<td>25mm</td>
<td>25mm</td>
<td>50mm</td>
</tr>
<tr>
<td>20mm</td>
<td>20mm</td>
<td>40mm</td>
</tr>
<tr>
<td>15mm</td>
<td>15mm</td>
<td>30mm</td>
</tr>
</tbody>
</table>

Fig. 16 Conditions for test sleeves

Fig. 17 Installation of test sleeves

Fig. 16 shows result of performance test and compared the result with Mr. Young. In same condition, ACSR330㎟, ACSR410㎟, and ACSR480㎟(R), three types of sleeves has manufactured in normal, allowable, limit condition. Mr. Young has 11.63mm deviation with 135 tests, and 3.66 deviations with newly developed device to inspect line sleeve in 55 tests.

V. CONCLUSION

Newly developed line sleeve inspection system has developed with catapiller mechanism and magnetic circuit. The developed system overcomes several obstacles on transmission line to inspect line sleeve on transmission line. Also, wireless camera attached to inspect transmission line conditions. However, newly developed system is not possible to inspect dual line transmission line cause of balance. Therefore, certain modifications are required to adapt the system on dual line.

REFERENCES

