A New Model for Question Answering Systems

Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract—Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn’t work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification.

This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing.

There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user’s question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that ‘Version No.1’ gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and ‘version No.2’ gave correct answers to 94% of questions (47 correct answers to 50 asked questions).

Keywords—Answer Processing, Classification, Question Answering and Query Reformulation.

I. INTRODUCTION

ANY researches have been done in recent years on QA systems. QA systems have been expanded to answer simple questions correctly; but now researches have been focused on methods for answering complex questions truthfulness. Those methods analyze and parse complex question to multi simple questions and use existing techniques for answering them. [1]

Dr. Mohammad Reza Kangavari is Assistant Professor within Department of Computer Engineering(CE), Iran University and Science and Technology. Phone: +98(21)73913305; fax: +98(21)77240469, (e-mail:kangavari@iust.ac.ir)

Samira Ghandchi & Manak Golpour are with the Iran University and Science and Technology, phone:+98(21)73913305; fax: +98(21)77240469; (e-mail:samiraghandchi@comp.iust.ac.ir), (e-mail: manakgolpour@comp.iust.ac.ir).

Recent researches show that increasing the performance of system is dependent on number of probable answers in documents.

Finding the exact answer is one of the most important problems in QA systems. For this purpose, this designed model uses syntax and semantic relations together, pervious asked questions and dynamic patterns to find exact answer at least timeline.

This model work on aerology domain by forecasting the weather information based on patterns in close domain question answering system. If there is no default proper pattern in database, user can make appropriate patterns referring to English language grammar. Designed QA system just answers the questions in factoid form or one sentence.

The aim of this paper is to design and implement a new model for classification, reformulation and answer validation in a QA system. Used methodology in this system is to find correct answer in 'weather forecasting' domain with NLP techniques, syntax & semantic relation among words, Dynamic pattern and previous information about defined domain.

The main reason behind the necessity of providing the system with an answer validation component concerns the difficulty of picking up from a document the “exact answer”.

Our approach to automatic answer validation relies on discovering relations between a question and the answer candidates by mining the documents or a domain text corpus for their co-occurrence tendency[11].

In this model, first of all, questions are parsed by using semantic and syntax information in the question. Second, answer patterns based on their types are specified. Then the search engine find candidate answer document and send them to answer processing module to extract correct answers. The system filter candidate answers collection based on co-occurrence patterns and assigns a priority number to the candidate answers. Finally the system ranks the answers and sends to user for final validation in order to extract the exact answer.

Considered patterns in this program are based on English language grammar and tried to include all probable patterns. If no proper pattern find, user can make a new pattern. This paper tries to use syntax, semantic relations and existing information of pervious asked questions by users which were saved in system. Our system modeled in aerology domain but it can easily works in both close and open domain in QA systems. In Section II, we considered QA systems, section III consist of question processing part and section IV present answer processing part. Section V includes the architecture of the new model and section VI discussed evaluation. Final section include conclusion of the designed model.
II. QUESTION ANSWERING SYSTEMS (QA)

QA is a type of information retrieval. Given a collection of documents (such as the World Wide Web or a local collection) the system should be able to retrieve answers to questions posed in natural language. QA is regarded as requiring more complex natural language processing (NLP) techniques than other types of information retrieval such as document retrieval, and it is sometimes regarded as the next step beyond search engines. [1][2]

QA research attempts to deal with a wide range of question types including: fact, list, definition, how, why, hypothetical, semantically-constrained and cross-lingual questions. Search collections vary from small local document collections to internal organization documents to compiled newswire reports to the World Wide Web. QA systems are classified in two main parts [14]:

- Open domain QA system
- Closed domain QA system

Open domain question answering deals with questions about nearly everything and can only rely on general ontology and world knowledge. On the other hand, these systems usually have much more data available from which to extract the answer.

Closed-domain question answering deals with questions under a specific domain (for example medicine or weather forecasting and etc) and can be seen as an easier task because NLP systems can exploit domain-specific knowledge frequently formalized in ontology. Alternatively, closed-domain might refer to a situation where only a limited type of questions are accepted, such as questions asking for descriptive rather than procedural information. [1][2]

QA is a system that gives short, exact and useful answer to natural language questions. Many searches have been done for expanding English language QA systems. Also some other works have been done on Chinese, Arabic, Spanish and ... QA systems. [3]

Question answering encompasses psychology, philosophy, linguistics, education, computer and library science. As a consequence, studies of the artificial intelligence, in particular natural language processing, and information retrieval aspects of question answering benefit from knowledge acquired in other disciplines. Philosophy and psychology provide insights into modeling of the question answering process. [1]

The aim of QA systems is to find exact and correct answer for user's questions. Analysis of question, search and choosing answer are three important items in a QA system.

In addition to user interaction, various QA systems contain at least three following parts:

1. Question processing
2. Document processing
3. Answer processing

III. QUESTION PROCESSING

As mentioned before, question, document and answer processing are three main parts of a QA system.

Important components of question processing are classification of question and reformulation.

A. Classification component

For answer extraction in a large collection of documents and texts, at first the system should know what it look for. In this case, questions should be classified regarding their types [4].

Question classification will be done before reformulation. This is for finding types of questions and answers. For this, system first should know type of question. It also helps system to omit the question in final format of answer.

Table No. 1 shows question words, type of questions and answers. Totally questions can be divided as follows:

- Questions with 'WH' question words such as what, where, when, who, whom, which, how, why and etc.
- Questions with 'modal' or 'auxiliary' verbs such as Yes/No.

It is obvious that specifying type of question is not enough to find the correct answer. For example in question 'Who was the first aerologist in USA?' type of answer will be 'a person'. But if a question is asked with 'What', exact type of answer is not specified. Because the answer may be definition, number or title. [6]

For correct answer extraction, some patterns should be defined for system to find exact type of answer and then sends to document processing. [4][5]

B. Reformulation component

Question reformulation (also called surface pattern, paraphrase or answer pattern) tries to identify various ways of expressing an answer given a natural language question. This reformulation is often used in Question Answering system to retrieve answers in a large document collection. [7]

The query reformulation component converts the question into a set of keyword queries that will be sent to the search engine for parallel evaluation.

Following items are important in reformulation:

1. Use of syntax relations among words of asked question sentence.
2. Use of semantic relations among words of asked question sentence.
3. Use the existing information of pervious asked questions and answers in which a part or totally is same to user's asked question. In this case, system can use type of pervious answer for new asked question. It causes that the process of finding proper pattern and type of answer become shorter and reduces the necessary time for submitting correct answer. [8][9]
It would be possible if the system has the ability of saving information in 'Usage knowledge' database. If all above options work together at the same time, the flexibility of system will increase. As mentioned before all flexibility of designed system in on 'Usage knowledge' part. This part is same as FAQ and also can answer to new asked questions which are not totally same to Previous questions and have some differences in adverbs or verbs.

When a user asks a question, first sentence parses to its syntax components and then its keywords are selected to use in reformulation.

<table>
<thead>
<tr>
<th>Question Classification</th>
<th>Sub classification</th>
<th>Type of Answer</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>When</td>
<td>Which</td>
<td>DATE</td>
<td>When did rain come yesterday?</td>
</tr>
<tr>
<td>Which</td>
<td>Who</td>
<td>PERSON</td>
<td>Which person did invent the instrument of aerology?</td>
</tr>
<tr>
<td>Which</td>
<td>WHERE</td>
<td>LOCATION</td>
<td>Which city has the min temperature?</td>
</tr>
<tr>
<td>Why</td>
<td>PERSON</td>
<td>REASON</td>
<td>Why don't we have enough rain this year?</td>
</tr>
<tr>
<td>Whom</td>
<td>What</td>
<td>Money / Number</td>
<td>Whom did invent wind speed recorder?</td>
</tr>
<tr>
<td>What</td>
<td>– Who</td>
<td>PERSON</td>
<td>What is the best meteorologist in Iran?</td>
</tr>
<tr>
<td>What</td>
<td>– WHEN</td>
<td>DATE</td>
<td>What year do we have max rain?</td>
</tr>
<tr>
<td>What</td>
<td>– WHERE</td>
<td>LOCATION</td>
<td>What is the capital of Iran?</td>
</tr>
<tr>
<td>Who</td>
<td>PERSON</td>
<td>PERSON</td>
<td>Who is the first meteorologist in world?</td>
</tr>
<tr>
<td>How</td>
<td>How</td>
<td>MANNER</td>
<td>How is the weather today?</td>
</tr>
<tr>
<td>How</td>
<td>– MANY</td>
<td>NUMBER</td>
<td>How many days do we have snow this week?</td>
</tr>
<tr>
<td>How</td>
<td>– Much</td>
<td>VALUE</td>
<td>How much rain did fall in this fall?</td>
</tr>
<tr>
<td>How</td>
<td>– long</td>
<td>Time / Distance</td>
<td>How long snow does it take today?</td>
</tr>
<tr>
<td>Where</td>
<td>Location</td>
<td>Location</td>
<td>Where do we have max temperature today?</td>
</tr>
</tbody>
</table>

There is an important question: 'What are keywords in question sentence?' Keywords are selected in question sentence as follow:
1- All words which are in 'quotations' and "double quotations",
2- All words that are name.
3- All words that are adverb (time, location, status).
4- All words that are main verb or modal verb.
5- All words those are subject.
6- All words that are object.

Next important subject is 'how can use keywords to make answer?'. For this propose, system uses patterns to find correct format of answer. These pattern are made regarding English language grammar.[4]

1) Rules for extract answer patterns. First step to find proper pattern is to find verb in sentence. In defined patterns verbs are totally divided in three parts:
1- Main Verb such as: 'to be' (am, is, are, was, been) or 'to have' (have, has, had)
2- Auxiliary verbs (do, does, did)
3- Modal verbs (can, could, shall, should, may, might, …) Main verbs never delete in answer, but regarding type of answer its location in sentence may change. Sometimes these verbs(am, is, are, …) come with another verb in 'ing' form. But auxiliary verbs will be deleted in answers. It should be noted that 'do' may located in sentence as a main verb that can be find by semantic relations.[9][10]

If question doesn't have WH question word and question is asked with a modal verb or 'to be' then answer is yes/no. Also if sentence doesn't have any question word (WH question or modal), system asks user that which question word make his question. After that usual process will be done.

IV. Answer PROCESSING

Answer processing module consist of two main components: answer extraction and answer validation. First, candidate answers extract from documents which are retrieve by search engine in answer extraction module. After that we
validate answers with filtering and ranking candidate answers and final system’s suggested answers with user voting.

Our approach to automatic answer validation relies on discovering relations between asked question and answer candidates by mining the documents or a domain text corpus for their co-occurrence tendency[12],[13]. The underlying hypothesis is that the number of these co-occurrences can be considered a significant clue to the validity of the answer.

As a consequence, this information can be effectively used to rank the amount of candidate answers that our QA system is often required to deal with. Also we can exploit domain knowledge and answer patterns to create new answers based on co-occurrence keywords and semantic relation.

A. FILTERING COMPONENT

Candidate answers collection which has been sent by answer extraction feed in filtering component. These candidate collections consist of some snippets which may include the exact answer. By using answer keywords, the system finds co-occurrence words [11] and semantic relations [14] existing in database ontology and moreover related sentences from knowledge domain. By analyzing the candidate answers and using answer type and keywords, some snippets eliminate from the collection. Then the best candidate answers send for ranking.

B. RANKING COMPONENT

This component receives a list of answers which have filtered before. This list consists of the best answer from the system’s point of view which is more related to the question. Ranking component classifies the answers and gives priority to them. A priority number is specified to answers by using the number of repeated answer type in the snippets and the distance of answer keywords (considering to threshold). The answer with highest priority is located at the top of the list and this task performs frequently for all answers. After that the data fetch from domain knowledge database, and the answers sent to user to validate.

C. USER VOTING (VALIDATING)

In this step, the answers are shown to user for validation. If the top answer was the exact answer, then system would increase a validation grade in usage knowledge for [q, a] pairs. That answer will submit in database to answer next similar question. Otherwise the other candidates will be shown to user to certify. This process continuous until there aren’t any other answers, then the systems asks for additional information from user and will send those information or new question to question processing module.

V. ARCHITECTURE

To increase the reliability and ability of designed QA system and to find correct and exact answer, we use dynamic pattern with semantic relations among words, verbs and keywords and also co-occurrence keywords.

In question processing module, at first the question is classified regarding linguistic theories and bases of answering questions. Then question's structure and keywords are specified by classification, send to document processing module to retrieve documents which may have proper answer.

In answer processing module, first of all candidate answers which is received from search engine, will be filtered by co-occurrence patterns and ordered based on some analyzing in system. Then the answers send to user to validate the candidates. Finally the system will present the exact answer.

A. SYSTEM COMPONENTS

Designed architecture has these parts, (see fig1):

1- Question interface: In this part user writes his question by an interface. If no proper answer is given, user can write his question in another way.

2- Query Analyzer: In this part question is parsed to its particles such as subject, object, verb, noun, adjective, adverb & etc.

3- Lexicon: This part is used as vocabulary (dictionary) and contains all words that are in related domains. Also the type of word such as subject, object, verb, noun, adjective, adverb & etc is specified in this part.

4- Database Ontology: In this part questions and answers are surveyed semantically. Semantic relation among keywords saved in this database.

5- Domain knowledge: Domain information is saved as database in this part and will submit the user's answer when a web service connects to internet.

6- Question classification: Question classification is one of the important functions of most QA systems. Most researches on this subject are based on regular expression, hand writing grammar rules and other advanced techniques in natural language for question parsing and finding answers. In this part all questions are classified regarding WH question words (such as What, Where, When, Who & etc) or other question words with Yes/No answer.

7- Reformulation: In this part main question (Q) with using rules changes to a question with new format (Q'). In this part question words and punctuation which make no difference in question and answer, are deleted and the root of words will be specified. Then by the words of new question, proper patterns and information are surveyed.

8- Usage Knowledge: one of the most useful ways for finding answers of question is to be used library of the previous questions and answer. If new user's question is similar to a previous submitted question, the answer of the old question will be used as answer of new question. If the new question is different with old questions in database, new question will be sent for other steps. Figure No. 1, shows the proposal architecture.

9- Candidate answers filtering: In this main part of the answer processing the candidate answers will be filtered based on question type and answer type which was created in system. Also some co-occurrence patterns create dynamically.
10- Candidate answers ordering: In this part the answers are ordered based on the distance of keywords in snippets, answer type and answer repetition.

11- User Voting: this part of the system plays the human assessment role which checks the correctness of answer and fills the validation grade in usage knowledge for the next validating which affect on timeline.

12- Pattern: this is a database which is used for answer patterns and will be updated with dynamic patterns which create in system and also co-occurrence keywords submit here.

B. ALGORITHM

As mentioned before for each question that is written by user in natural language, some words of question are used as keywords in answer. These keywords can be used as subject, object, verb, adverbs & etc.

Designed algorithm of this QA system is as follow:

1- User asks question through a query interface. If the question is similar to one of the previous questions which were saved in usage knowledge database, the answer of previous question will be chosen for user’s question and the system give the answer. Otherwise next step will be done.

2- Query analyzer parses question as subject, verb, object, adverb & etc. It should be noted that the type of words and synonyms of them (if is existed) were defined dynamically in Lexicon database. If system could not find the word or its type in question, system will announce and user can enter the new word and its type. In this case Lexicon database will be completed and updated.

At last a tree view result will be used in classification part. In classification part, type of question and after that type of answer will be specified.

3- The question may have a WH question word which its answer is proportionate to that question.

3-1 Asked question doesn’t have any WH question word and just has a modal or auxiliary verb with Yes/No answer.

3-2 User may ask his question with a sentence that has no verb or question word such as: Temperature of Tehran.

4- After finishing these steps, for finding answer the most important part of job, query reformulation based on proportionate pattern, should be done.

5- The search engine retrieves the documents in scope of the domain and search for answers.

6- From search engine candidate answers collection send to answer processing module to identify the exact answer. First of all, dynamically the component based on co-occurrence pattern and semantic relations existing in database ontology and also question and answer type extracting in question processing module, create some co-occurrence.

![Fig. 1 Question answering system architecture](image-url)
answers in system and add them into database.

7. Based on the semantic analysis and the question and answer type and existed patterns, the system filter candidate answers collection. Therefore some answers which are not related with the asked question eliminated.

8. The output answers order by keywords distance and the frequently rate of answer keywords in snippets. In this case the filtered answers obtain priority and locate in an ordered list.

9. The related data extract from domain knowledge and substitute into the answer pattern to create complete answers and send them to user for validation.

10. The answers with high priority show to user for validation. Then the answers receive a validation grade and save it in usage knowledge. If the user accepts the suggested answer which system presented as an exact answer, the algorithm will be finished.

11- If not, the algorithm send next set of candidate answers with priority to user from the list. This task performs recursively.

12- Finally if the user don't accept any answer, the system ask for another question and request for additional information from the user and send them to question processing module, and also update the pattern database to eliminate non efficient patterns.

VI. PROCESS OF REFORMULATION

For increasing efficiency and finding exact answer, system uses data base ontology. This database which data will be stored in it parallel with lexicon, saves synonyms or words that are near in meaning, such as 'temperature' and 'degree' in weather forecasting domain.

Flexibility of designed system is based on usage knowledge. It means that if the new question is totally or nearly similar to a question which was asked before, system can use the answer of old question for new one and specifies answer for user.

New asked question is parsed in query analyzer part to its components. Then all of these components check with data in usage knowledge to find the probable similarity with pervious questions.

If during checking, the structure of asked question totally is same as data in usage knowledge, certainly the answer of new asked question is same to answer of pervious question. But if some differences find between new asked question and data (such as question word, proposition, adjective, name and adverb) then system uses 'word ontology' to find synonyms of different parsed words to find similarity between new asked and pervious questions. At last if there was any answer for synonyms word in previous question, system uses this answer for the answer of new asked question.

For example during checking, if two words such as 'temperature' in new asked question with 'degree' in pervious questions is different and in 'word ontology' these two words were saved as 'synonyms', also a previous question with 'degree' was asked, then system takes these two questions and the type of their answers, same even if they have different adverbs.

It should be noted that different adverbs in two same questions, have no effect in type of question. This option is important for question words that have more than one type of answer (such as 'what' that its answer type may be 'number', 'title' or "definition").

If the structure of question has totally different, it means no similar question exists in usage knowledge, system uses other defined patterns to finding answer of question.

VII. EVALUATION

Two systems were implemented based on our architecture. 'Version No. 1' was designed base on patterns which user couldn't define or change them. Also in this version just words were checked in correct dictation. In this case system just announces 'This word doesn't exist' and can't show words which have near same dictation. Also this version can't check the new asked question with pervious asked questions.

In second version which named 'Version No.2' system has the capability to check the dictation of question. This means that if a question with false dictation is asked, system shows the words that have near same dictation and user can chose the correct word from the list. If user doesn't select any word from list, system save the word as a 'new word' in its data base and asks for other specifications of word.
'Version No. 2' is capable to control words of question semantically. Other advantage of this version is the ability of defining new patterns by user. This means that if system or user doesn't find any proper pattern for answering the question, user can make a proper pattern regarding English language grammar.

In other sentence 'version No.2' is dynamic in pattern. Also this version of program is capable to answer a sentence with more than one question word individually or a sentence without question word or a multi sentence text that has a question.

For evaluation of the implemented system, 50 questions were asked by 20 various persons in age and knowledge in different location and time situations.

Table No. 2 shows questions which were not answered correctly by 'version No.1' and 'version No.2' of program.

Also in this table questions which were gotten false answer in program 'version No.1' and after some changes in architecture, algorithm, semantic relation and patterns of program which was made 'version No. 2' of program got correct answer, are shown. 'Good' is used for correct answer of question and 'Bad' is used for false answers. From total 50 asked questions, 'version No. 1' and 'version No.2' answered false to 15 and 3 questions respectively. It means that program 'version No. 1' answers correctly to 70% and 'version No.2' to 90% of questions.

Chart No.2 shows the performance of ‘version No.1’ and ‘version No.2’ of designed system. It also shows the number of correct answers that each version of system has given. ‘Version No.1’ gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and ‘version No.2’ gave correct answers to 94% of questions (47 correct answers to 50 asked questions). Results show that by improving the precision of of query reformulation with regard syntax and semantic relation and also developing answer validation by using words co-occurrence
techniques and also applying user assessments to validate answers total response time. This grade is null at the beginning of the system but by using QA system this field will increase and affect on response access time.

Future researches should consider factors that lead users to reformulate their questions. Also new research should be done to gather more information in various levels of understanding, effectiveness and situations. Methods of gathering multi information such as documents, interviews, reports and etc. should be done. In addition that we must improve the answer processing module by identification new kind of patterns and try to decline the timeline to find the exact answer which is performed here by using validation grade and usage knowledge database.

REFERENCES


