An Elin Load Tap Changer Diagnosis by DGA

Hoda Molavi, Alireza Zahiri, Katayoon Anvarizadeh

Abstract—Dissolved gas analysis has been accepted as a sensitive, informative and reliable technique for incipient faults detection in power transformers and is widely used. In the last few years this method, which has been recommended by IEEE Power & Energy society, has been applied for fault detection in load tap changers. Regarding the critical role of load tap changers in electrical network and essential of catastrophic failures prevention, it is necessary to choose "condition based preventative maintenance strategy" which leads to reduction in costs, the number of unnecessary visits as well as the probability of interruptions and also increment in equipment reliability. In current work, considering the condition based preventative maintenance strategy, condition assessment of an Elin tap changer was carried out using dissolved gas analysis.

Keywords—Condition Assessment, Dissolved Gas Analysis, Load Tap Changer

I. INTRODUCTION

Load tap changers (LTCs) for power transformers are essential components of the electrical networks. It has been estimated that a third of all transformer failures can be traced to faulty LTCs [1], [2].

Since LTCs are the only movable part of power transformers, they suffer from various aging mechanisms [3]. Common LTC failures are being caused by mechanical malfunction, increased contact resistance, localized thermal stress, material failure, breakdown of the insulating oil (cooking), contact wear, improper design or high loads [1]. Utilities seek new methods and technologies to extend the service intervals and monitor equipment condition to avert catastrophic failures, reduce maintenance costs and increase the reliability of power delivery and distribution [1]. Corrective maintenance, Period based preventative maintenance and Condition based preventative maintenance are three classical maintenance strategies [4]. The concept of corrective maintenance is generally considered unacceptable for LTCs, considering their important role on running the distribution system. Regarding the variation in duty between different tap changers in a same utility and the recognition of the high reliability of in service tap changers, the traditionally using "period based preventative maintenance" is going to be replaced by "condition based maintenance" which offers several advantages to the utility as following [5]:

- Reduction in the required number of maintenance visits
- Reduction in maintenance costs
- Reduction in the possible interruptions to supply
- Reduction in the number of catastrophic failures
- Increment in the reliability of power delivery and distribution

II. PERFORMANCE PROCEDURE

A. The Selected LTC

An Elin load tap changer of a 125 MVA power transformer in a 230/63 substation was selected as the experimental pilot. It is worth noting that 230/63 kV transformers are considered as the most frequent used power transformers in Iran. The pilot LTC had a sampling valve in the bottom of the equipment which facilitated sampling procedure. Furthermore it was possible to have overhaul over the equipment in the near future which enables the authors to have eye inspection over the selected LTC to compare their predictions with the results from inspection.

After choosing the LTC, a form containing characteristic information of the selected LTC and its transformer was filled. The information included the company's name, the substation name and address, transformer's name, voltage level range etc. It also comprised LTC's information such as tap changer's type, its manufacture, oil volume, breathing type, sampling valve position etc. Some of the characteristics of the selected LTC have been presented in Table I.

| THE CHARACTERISTICS OF THE SELECTED LTC |
LTC's type	MLG3.720
Operating time	26 years
Last Overhaul date	2003

Regarding the information in Table I and the recommended maintenance interval by manufacturer, the overhaul operation should be performed over the equipment at least 2-5 years ago. It is worth noting that according to manufacturer advice, overhaul operation should be performed every 5-7 years or the number of operation of 70,000, depending on which is reached first.
B. Experimental Work and Sampling

Before each sampling a form containing some essential information such as sampling date, number of operation since the last overhaul, oil and environment temperature etc. was filled. In Table II, the mentioned data has been presented for each sampling stage.

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE INFORMATION FOR EACH SAMPLING STAGE</td>
</tr>
<tr>
<td>1st stage sampling</td>
</tr>
<tr>
<td>Sampling date</td>
</tr>
<tr>
<td>Number of operation since last overhaul</td>
</tr>
<tr>
<td>Oil temperature</td>
</tr>
<tr>
<td>Environment temperature</td>
</tr>
</tbody>
</table>

It should be noted that oil sampling was performed according to ASTM D 3613 standard. The samples were tagged, packed and forwarded to the laboratory considering the mentioned standard [16].

III. ANALYSIS PROCEDURE

Dissolved gas analysis was carried out considering ASTM D 3612 standard in a reliable laboratory [17].

IV. RESULTS INTERPRETATION

DGA data interpretation was performed by comparison of each sampling stage data to the LTC monthly watch criteria presented by Youngblood et al. [18]. If none of the concentrations exceeds the threshold values, the LTC performance is determined as normal operation.

In case of exceeding one of the gas concentrations from its threshold value, the possibility of fault presence was investigated by gas concentration ratio method presented in reference [19]. If the ratios are in the "Needs attention" range, the equipment is in normal operating condition. In the case laying data in the "Possible damage" or "Detected damage" range fault exists in the equipment. In this condition using the Duval triangle 2, the fault type would be identified [20].

In addition of mentioned interpretation, a comparison between DGA results from two sampling stages was performed.

V. RESULTS AND DISCUSSION

In Figs. 1 and 2 dissolved key gases concentrations and other dissolved gases concentrations including total dissolved combustible gases concentration (TDCG) in oil for each sampling stage are presented, respectively. Moreover, the results from two sampling stages were compared in these figures. For both sampling stages, the concentrations of hydrogen, ethylene and acetylene (key gases) are beyond the LTC monthly watch criteria; therefore the gas ratio method was applied.

In order to use mentioned method, the following ratios were calculated.

\[FR = \frac{C_2H_2 + H_2}{CH_4 + C_2H_6 + C_2H_4 + C_2H_2 + CO + H_2} \]
(1)

\[R_1 = \frac{CH_4 + C_2H_4 + C_2H_2}{CH_4 + C_2H_6 + C_2H_4 + C_2H_2} \]
(2)

\[R_2 = \frac{CH_4 + C_2H_6 + C_2H_4}{C_2H_2} \]
(3)

\[R_3 = \frac{C_2H_4}{C_2H_2} \]
(4)

For obtained data from both sampling stages, all ratios were laid in "Needs attention" range. To ensure the fault absence in the equipment, the Duval triangle 2 was applied for each sampling stage, as shown in Figs. 3 and 4. The Triangle coordinates corresponding to DGA results can be calculated as follows:

\[%CH_4 = \frac{CH_4}{CH_4 + C_2H_4 + C_2H_2} \times 100 \]
(5)

\[%C_2H_4 = \frac{C_2H_4}{CH_4 + C_2H_4 + C_2H_2} \times 100 \]
(6)

\[%C_2H_2 = \frac{C_2H_2}{CH_4 + C_2H_4 + C_2H_2} \times 100 \]
(7)
VI. SUMMARY

Since the "condition based preventative maintenance strategy" is accepted as the most convenient maintenance strategy, condition monitoring over an Elin load tap changer was performed using Dissolved Gas Analysis (DGA) for a three-month interval by sampling in two stages. The oil sampling was done according to ASTM D 3613 standard, and samples were analyzed considering ASTM D 3612. DGA data interpretation was carried out using Threshold value method, Gas concentration ratio method as well as the Duval triangle 2 method. Data interpretation for the 1st sampling stage showed no fault existence. However, the results of 2nd sampling stage revealed the existence of in progress coking and heavy coking or increased resistance of the contacts or severe arcing. In conclusion, the equipment needs to be test or inspect for signs of faults. In case of impossibility for this recommendation it is advised to repeat the DGA test in three-month intervals which helps to be aware of the equipment condition and also to avert catastrophic failures.

ACKNOWLEDGMENT

The authors gratefully acknowledge the colleagues in NRI: Mr. Zhaam, Mr. Ahmadi, Mr. Ghadimi and also Dr. Porkar from IGMC. We also would like to acknowledge NRI and also Mr. Marjanmehr and Mr. Fathi for supporting this research.

REFERENCES

EPRI, Chemical wear implants and online monitoring for electrical contact wear.

NRI (Niroo Research Institute) of Iran started its activities in 1997. It has played a leading role in developing new technologies for Electric Power Industry ever since. NRI is the major research organization affiliated to the Ministry of Energy of Iran. NRI is performing the dual task of meeting the present and future demands of electric power industry, while making a better use of available resources, preserving the environmental and maintenance costs as low as possible. NRI has invested considerably in providing adequate conditions to achieve its objectives. The main building and laboratories of this institute are located in the north-west of Tehran. Research activities are carried out in 6 various research centers, consisting of 18 technical research departments, using the facilities of 9 advanced laboratories.

Hoda Molavi is an assistant professor in Chemical Engineering at NRI. She received her PhD degree in Chemical Engineering in 2010 from University of Tehran. Furthermore, she received her MSc (2006) and BSc (2004) degrees from University of Tehran and University of Mazandaran, respectively. She is a member of Iranian Nanotechnology Society (INS). She has been awarded as top graduating student of nanotechnology in 2011. Her current research area is condition monitoring of electrical equipments using oil analyses, application of nanotechnology in increment of equipment's efficiency.

Alireza Zahiri is a researcher in Chemical Engineering at NRI since 2002. He received his MSc (2004) and BSc (2002) degrees in Chemical Engineering from University of Mazandaran and Amirkabir University, respectively. He is a member of Iranian Corrosion Association (ICA) and Iranian Association of Chemical Engineering (ICHE). His current research interests are condition monitoring of equipment by oil analyses, life assessment, bi-metallic catalysts, PCBs destruction, paint and coating, failure analysis.

Katayoon Anvarizadeh was a researcher in Chemistry in NRI (1996-2011). She received her MSc and BSc degrees in Chemistry from Azad University and Al-zahra University, respectively. Her research area was condition monitoring of equipments using oil analysis.