Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series

Shang-En Yu

Abstract—Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series) different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying out forecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the variables selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Linear regression is used as the references or predictions to investors or decision-makers to discover some valuable information which tends to be overlooked. We pick up the useful information by means of data mining technology is to find out related information as well as historical transaction data, so as to discover the inter-relationship.

There are many factors that could have an influence on the default behavior of residential mortgages, such as the present value of the mortgage payments, characteristics of the family, loan to value (LTV) ratio, home equity, unemployment rate, and divorce rate [1]-[5]. In their study of the effects of counseling on mortgage default behavior, Hartsarsk and Gonzalez-Vega [6], [7] concluded that counseled borrowers were less likely to default on their mortgage than non-counseled borrowers, and that this also affected the optimal exercise. In this study we test homogeneity in different city districts. The remaining part of this paper is organized as follows.

Several problems can cause overdispersion in a fitted model, such as a large residual deviance relative to the number of degrees of freedom or a lack of important explanatory variables [8]. Allison [9] suggested that lack-of-fit could be associated with the dependence of the observations. Collett [8] suggested that overdispersion might be accommodated by including a random effect in the model.

There are two conventional goodness-of-fit tests, the Pearson χ² and the likelihood ratio χ² tests, also known as deviance χ² [9]-[11]. Pregibon [12] carried out a theoretical analysis that extended linear regression diagnostics to a logistic regression. Sample fractions may give only a poor estimation of πi for some cells with few observations, and produce large standard errors [13]. Collett [8] proposed that overdispersion could be accommodated for by including a random effect in the model.

Davidian and Gallant [5] used Gaussian quadrature methods for nonlinear mixed models. Davidian and Giltinan [5] and Vonesh and Chinchilli [6] provided an overview and a discussion of the general theoretical development of nonlinear mixed models. In the present study, an empirical study was conducted and the results showed the practical viability of this approach.

II. Sample Description

The original data set collected for this study includes data on individual residential foreclosed mortgages from 1987 to 2007. Data were collected from the Taiwan Kaohsiung District Court in the Cianjin District, Kaohsiung City, Taiwan. The data set included 891 cases without a bidder and 989 cases with a bidder. The censoring time was at the end of 2007.
When there is bidder for the foreclosed mortgage, the case is classified as a “bid”. The bids for foreclosed mortgages are associated with the following factors: upset price (reserve bid) \((X_1)\), average price per square foot \((X_2)\), square footage \((X_3)\), square meters of ground \((X_4)\), number of bids \((X_5)\), rented or not \((X_6)\), handed over or not \((X_7)\), floors \((X_8)\), total stories \((X_9)\), width of the road \((X_{10})\), distance from MRT \((X_{11})\), distance from a school \((X_{12})\), economic growth rate \((X_{13})\), and unemployment rate \((X_{14})\); all these factors are considered in the regression model.

III. FIXED-EFFECTS LOGIT MODEL

The upset price, total number of stories, MRT station distance, and economic growth rate, all have significantly positive effects on the default behavior. The price of average square footage, the number of bids, width of road, and unemployment rate, all have significantly negative effects on the default behavior. The others variables are not significant. It can be seen that each of the explanatory variables has a significant effect on the bid for the foreclosed residential mortgages [1]-[30].

IV. GOODNESS-OF-FIT STATISTICS

Knowing a model’s degree of effectiveness is very important when describing outcome variables. Consequently, assessing the degree of closeness of the model-predicted values to their corresponding observed values is useful when applying a regression model; this is referred to as the goodness-of-fit. Two conventional goodness-of-fit tests are described in section IIIB.

In Table I, it can be seen that the estimate of deviance, labeled Value/DF, contains a dispersion parameter \((\text{value}/\text{DF})\) of 1.3006 and a Pearson Chi-square dispersion parameter of 1.0150. The values of the deviance \(\chi^2\) and Pearson \(\chi^2\) are larger than the degrees of freedom; the \(P\)-values for deviance \(\chi^2\) are smaller than 0.05 (<.0001). Therefore, this model seems to have an overdispersion of the data.

| TABLE I GOODNESS-OF-FIT STATISTICS: EXPLANATORY VARIABLE \(X_i\) |
|-----------------|-----------------|----------------|
| Deviance & Pearson Goodness-of-Fit Statistics | Deviance & Pearson Goodness-of-Fit Statistics |
| Criterion | DF | Value/DF | Value/DF | Pr>Chi-Sq |
| Deviance | 1818 | 2364.5166 | 1.3006 | <.0001 |
| Pearson | 1818 | 1845.3329 | 1.0150 | 0.3220 |

Number of unique profiles: 1826

V. CONCLUSION

Many factors, such as the upset price \((X_1)\), price of average square footage \((X_3)\), square footage \((X_4)\), number of bids \((X_5)\), total stories \((X_9)\), MRT station distance \((X_{11})\), and unemployment rate \((X_{14})\), have a significant impact on successful bids for foreclosed mortgages. A nonlinear mixed model can be used to classify the foreclosed mortgages into two groups, with a bidder and without a bidder.

ACKNOWLEDGMENT

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for their financial support of this research under Contract. The authors are also most grateful for the kind assistance of the constructive suggestions of the anonymous reviewers all of which has led to the making of several corrections and suggestions that have greatly aided us in the presentation of this paper.

REFERENCES