Molecular Identification of ESBL Genes $\text{bla}_{\text{GES-1}}, \text{bla}_{\text{VEB-1}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{OXA-1}}, \text{bla}_{\text{OXA-4}}, \text{bla}_{\text{OXA-10}}$ and $\text{bla}_{\text{PER-1}}$ in *Pseudomonas aeruginosa* Strains Isolated from Burn Patients by PCR, RFLP and Sequencing Techniques

Fereshteh Shacheraghi, Mohammad Reza Shakibaie, Hanieh Noveiri

Abstract—Forty one strains of ESBL producing *P. aeruginosa* which were previously isolated from burn patients in Kerman University general hospital, Iran were subjected to PCR, RFLP and sequencing in order to determine the type of extended spectrum β-lactamases (ESBL), the restriction pattern and possibility of mutation among detected genes. DNA extraction was carried out by phenol chloroform method. PCR for detection of bla genes was performed using specific primer for each gene. Restriction Fragment Length Polymorphism (RFLP) for ESBL genes was carried out using EcoRI, NheI, PvuII, EcoRV, DdeI, and PstI restriction enzymes. The PCR products were subjected to direct sequencing of both the strands for identification of the ESBL genes. The $\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{VEB-1}}, \text{bla}_{\text{VEB-1}}, \text{bla}_{\text{GES-1}}, \text{bla}_{\text{OXA-1}}, \text{bla}_{\text{OXA-4}}$ and $\text{bla}_{\text{OXA-10}}$ genes were detected in the (n=1) 2.43%, (n=41) 100%, (n=28) 68.3%, (n=10) 24.4%, (n=29) 70.7%, (n=7) 17.1% and (n=38) 92.7% of the ESBL producing isolates respectively. The RFLP analysis showed that each ESBL gene has identical pattern of digestion among the isolated strains. Sequencing of the ESBL genes confirmed the genuinity of PCR products and revealed no mutation in the restriction sites of the above genes. From results of the present investigation it can be concluded that $\text{bla}_{\text{VEB-1}}$ and $\text{bla}_{\text{CTX-M}}$ were the most and the least frequently isolated ESBL genes among the *P. aeruginosa* strains isolated from burn patients. The RFLP and sequencing analysis revealed that same clone of the bla genes were indeed existed among the antibiotic resistant strains.

Keywords—ESBL genes, PCR, RFLP, Sequencing, *P. aeruginosa*

I. INTRODUCTION

Pseudomonas aeruginosa is ranking second among gram negative hospital acquiring pathogens and one of leading cause of burn infections reported to the National Nosocomial Infection Surveillance System [1, 2]. The idea of eradication of *P. aeruginosa* from burn patients through intense antimicrobial therapy may lead to significant selection of resistance strains in burn unit of the hospitals [3]. One of the important features of these strains is resistant to multiple clinically important antibiotics like third generation of cephalosporins, imipenem and aztronam [4]. Many *P. aeruginosa* strains produces different class of extended spectrum β-lactamases (ESBLs) that enable bacterium to stand against extended—spectrum cephalosporins, such as ceftaxime, ceftriaxone and cefazidime and have been reported with increasing frequency [5, 6]. ESBL mediate resistance to cephalosporin antibiotics and were first discovered in Europe in the early 1980s. They have become a widespread problem, particularly in *Klebsiella pneumoniae*, and increasingly in non-typhoid Salmonella species. The OXA-type ESBLs have been found mainly in *P. aeruginosa* isolates from Turkey and France [7].

Traditionally, ESBL enzymes have been derivatives of TEM and SHV parent enzymes. The last year, however, has seen an explosion of developments in ESBLs of non-TEM, non-SHV lineage in Europe. The CTX-M type ESBLs have become particularly widespread [8]. Bert et al., [9] detected bla_{VSE} and bla_{OXA} gene variants using PCR. The genotypes were distinguished by restriction of PCR products with endonucleases recognizing sites involved in point mutations. Jiang et al., [10] studied a total of 75 clinical isolates of *P. aeruginosa*. Thirty-four of 36 multidrug-resistant *P. aeruginosa* clinical isolates were positive for ESBLs and $\text{bla}_{\text{VGB-1}}$ was the most prevalent ESBL gene reported by the authors. Antibiotic susceptibility tests and PCR amplification of genes encoding class A ($\text{bla}_{\text{GSE-1}}, \text{bla}_{\text{PER-1}}, \text{bla}_{\text{GVB-1}}, \text{bla}_{\text{TEM}}, \text{bla}_{\text{OXA}}, \text{bla}_{\text{TX-M}}$ and $\text{bla}_{\text{GES-1}}$) and class D β-lactamases ($\text{bla}_{\text{OXO-gp1}}, \text{bla}_{\text{OXA-gp2}}, \text{bla}_{\text{GSE-1}}$) in *P. aeruginosa* were carried out by Lee et al., (11). In 64 (25.4%) isolates, structural genes for PSE-1 (6.3%), OXA-10 (13.1%), OXA-4 (4.3%), OXA-30 (2.0%), OXA-2 (2.3%) and OXA-17 (0.4%) were found, their distribution varied between provinces. None harboured $\text{bla}_{\text{PER-1}}, \text{bla}_{\text{VEB-1}}, \text{bla}_{\text{TEM}}, \text{bla}_{\text{OXA}}, \text{bla}_{\text{TX-M}}$ and $\text{bla}_{\text{GES-1}}$. Similarly, PCR and sequence analysis revealed the presence of the $\text{bla}_{\text{TX-M}}, \text{bla}_{\text{SHV}}$ and $\text{bla}_{\text{TEM-16}}$ genes in the *P. aeruginosa* and $\text{bla}_{\text{TX-M}}$ and bla_{SHV} in the *Sneathrophomonas maltophilia* strains [12]. Mirsalehian et al., [13] studied the prevalence of ESBLs and antimicrobial susceptibilities of *P. aeruginosa* isolated from burn patients in Tehran, Iran. It was found that 50 (74.62%), 33 (49.25%) and...
21 (31.34%) strains among 67 ESBL-producing strains amplified bla_{OXA-10}, bla_{PER-1} and bla_{VEB-1} respectively. Woodford et al., [14] studied P. aeruginosa isolates producing VEB-type ESBL in the United Kingdom. In one UK centre, a VEB-1 producing strain was isolated. This strain was resistant to all beta-lactams, aminoglycosides and ciprofloxacin, remaining susceptible only to colistin (MICs <1 mg/L). Two other P. aeruginosa isolates co-producing both VEB and VIM enzymes were received from two other UK hospitals; one isolate represented inter-hospital spread of the O15 strain and the second was distinct. Existence of SHV-type ESBL genes in P. aeruginosa by PCR-restriction fragment length polymorphism have been reported by Blagui et al. [15]. Restriction of PCR products by Ddel and BsrI revealed the same restriction pattern with the bla_{SHV-1} positive control.

In pervious study, we isolated 41 strains of ESBL producing P. aeruginosa from burn infected patients in Kerman University of Medical Sciences general hospital, Iran [4]. In present study we tried to identify the ESBL genes, the restriction digestion patterns and possibility of mutations in restriction sites among detected bla genes by PCR, RFLP and sequencing techniques.

II. MATERIAL AND METHODS

Bacterial sources

120 strains of P. aeruginosa were isolated from burn infected patients in burn unit of the Kerman University general hospital, Iran within one year period. Identification of the isolates was done according to standard microbiology procedures [4]. The ESBL production was detected among 41 strains by disc diffusion methods as previously published by Shakibaie et al. [4]. The standard phenotypic confirmatory test and double disc synergy methods ESBL production was detected among 41 strains by done according to standard microbiology procedures [4]. The Iran within one year period. Identification of the isolates was carried out in burn unit of the Kerman University general hospital, Iran [16].

Antibiotic sensitivity tests

The antibiotic sensitivity of the above strains was carried out by disc diffusion break point assay and MIC was determined by agar dilution method in Muller-Hinton agar (MHA) as described previously [4].

DNA extraction

One ml of 24 hours grown P. aeruginosa cultures in Triplicate Soy Broth (TSB) medium (Merck, Germany) were transferred into 1.5ml sterile Eppendorf microtube tubes and centrifuged at 10.000g for 10 minutes. The pellets were dissolved in 600µl of lysis buffer (NaCl 1M, Tris-HCl 1M, EDTA 0.5M), 20µl SDS (25%), 3µl of proteinase -K (20mg/ml) and incubated at 60°C for 1 hour. After the lysis, 620µl of phenol/chloroform/isoamylalchol (25:24:1 Volume/Volume) were added to the above solutions, carefully vortexed, and centrifuged at 12.000g for 10 minutes. The supernatants were transferred to other sterile microfuge tubes. 1ml of 95% cold ethanol was added and allowed to stand for 1hour in refrigeration condition (4°C). DNA was then precipitated in each tube by centrifugation at 12.000g for 10 minutes. The precipitated DNA was dissolved in 50µl of 10mM Tris EDTA - buffer (TE) containing 10µl of RNase –A as described by Sambrook et al. [28] and used for further investigation.

PCR reaction

The primer sequence for ESBL genes is showed in Table-1. The PER-1 sequence derived from Pseudomonas aeruginosa KOAS Producing PER-1 (Pasteur Institute of France), VEB-1 Pseudomonas aeruginosa 10.2 (24), GES-1 K. pneumoniae, Prof. P. Nordmann CHU Bicetre-France and CTX-M K.pneumoniae 7881 kindly provided by P. Nordmann.

A typical 25µl PCR reaction mixture for every primer set was consisted of 1X- PCR reaction buffer (Fermentase, Lithuania), 1.5 µm MgCl₂ (25mM), 0.7 µm of each dNTP (10mM), 0.7µl of each primer, 1unit of Taq DNA polymerase 5U/µl (Fermentase, Lithuania) and 0.5 µl of 10µg DNA template. Amplification was carried out in a thermocycler (Eppendorf Mastercycler®, Massachusetts, USA). Agarose gel electrophoresis (1.0%) of PCR products was carried out in horizontal bed apparatus using 1mM Tris-Borate- EDTA (TBE) buffer (pH-7.2) at 90V for 1hour and the DNA bands were then stained with 0.5µg/ml ethidium bromide (Sigma USA) for 10 minutes. The gels were washed twice with D/W and observed under U.V. gel documentation (UV DOC, England) at 280nm. 1000-100bp DNA ladder was used to confirm the size of each specific bla gene. Simultaneously, a positive control was run for each ESBL gene.

Restriction Fragment Length Polymorphism (RFLP)

The RFLPs of ESBL genes were carried out using EcoRI, NheI, PFUII, EcoRV, Ddel, and PstI restriction enzymes respectively. The enzymes were purchased from Fermentas Company Ltd. 1.5µl of each enzyme and DNA mixtures were added to 1µl restriction buffer and kept at 37°C. Digestions were completed within 3 hours and the mixture then loaded into 1.5% agarose gel concentration. The electrophoresis was conducted for each RFLP set in TBE-buffer at 60V for two hours. The gel was then stained with ethidium bromide solution (0.5µg/ml) and observed under UV light gel documentation system as described above.

Sequenceing of the PCR products

DNA sequencing for all 41 strains was performed for identification of detected bla genes using primers as shown in Table-1. The PCR products of above genes were further purified with PCR purification Kits (Fermentas) and subjected to direct sequencing of both the strands performed by the Macrogen Company (Seoul, Korea) as described previously [12]. The nucleotide and deduced amino acid sequences were analyzed with CROMASPRO-2 and MEGA-4 softwares.

International Scholarly and Scientific Research & Innovation 4(1) 2010
III. RESULTS

The results of PCR of the bla genes of the *P. aeruginosa* strains isolated from one of the Kerman University of Medical Sciences general hospital in Iran are shown in Figure 1. The *bla*-VEB-1 (643bp) was the most frequent ESBL gene and isolated from almost all (100% [n=41]) of the ESBL producing strains, while, *bla*OXA-10 (227bp) was detected in 92.7% (n=38) of the isolates. The other ESBL genes were detected among ESBL producing populations including *bla*CTX-M (550bp), *bla*PER (925bp), *bla*GES-1 (864bp), and *bla*OXA-1 (909bp). Figure 2 shows the conserved region for the strains isolated from burn patient s in Kerman University general hospital. The nucleotide sequences was analyzed with CROMASPRO-2 and MEGA 4 softwares and confirmed by blast system in internet.

IV. DISCUSSION

Chromosomal or plasmid mediated antibiotic resistance is common place in *P. aeruginosa* isolated strains from different hospitals in Iran [1]. In this research, the frequency of the ESBL genes among ESBL producing *P. aeruginosa* burn isolates were studied. The *bla*VEB gene was detected in almost all ESBL producing isolate. This was accordance with other results in Middle East and Iran. A retrospective survey was conducted to characterize beta-

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>5’- Sequence - 3’</th>
<th>Detected gene</th>
<th>Molecular Weight</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEB-1(F)</td>
<td>CGAATTCATCGTCAAGG</td>
<td>blaVEB</td>
<td>643bp</td>
<td>21</td>
</tr>
<tr>
<td>VEB-1(R)</td>
<td>GAACTCTGCAAAATAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GES-1(F)</td>
<td>AGCTGCTTATCAAGGAC</td>
<td>blaGES</td>
<td>643bp</td>
<td>22</td>
</tr>
<tr>
<td>GES-1(R)</td>
<td>GTAAGCTCTGCAAAATAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M(F)</td>
<td>CATATTGCTGTCAAGG</td>
<td>blaCTX-M</td>
<td>550bp</td>
<td>23</td>
</tr>
<tr>
<td>CTX-M(R)</td>
<td>ACCGGGATATCTGGTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-1(F)</td>
<td>ACCGGTAAATTAAGGTC</td>
<td>blaOXA-1</td>
<td>882bp</td>
<td>24</td>
</tr>
<tr>
<td>OXA-1(R)</td>
<td>GTAGGATTAGGTTTTGGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-4(F)</td>
<td>TCAACAGATATCTCTAGT</td>
<td>blaOXA-4</td>
<td>2160bp</td>
<td>25</td>
</tr>
<tr>
<td>OXA-4(R)</td>
<td>TTTAATCCATTAGAATG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-10(F)</td>
<td>TCAACAAATGCAGGAGA</td>
<td>blaOXA-10</td>
<td>277bp</td>
<td>26</td>
</tr>
<tr>
<td>OXA-10(R)</td>
<td>CCAAACACGAAAAACCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PER-1(F)</td>
<td>AATTTGGGCTTAGGGCA</td>
<td>blaPER</td>
<td>925bp</td>
<td>27</td>
</tr>
<tr>
<td>PER-1(R)</td>
<td>AAATGGAATGGTCTTAA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F= Forward primer
R= Reverse primer
lactamases in a collection of 43 ceftazidime-resistant \(P. \) aeruginosa isolates recovered from patients with bloodstream infections hospitalized at a Brazilian teaching hospital between January and December 2005 (17). It was found that nine isolates (20.9%) produced an ESBL, either GES-1 (n = 7, 16.3%) or CTX-M-2 (n = 2, 4.6%).

Drug susceptibility testing and PCR assay were used to determine the antibiotic susceptibility patterns and prevalence of genes encoding five different extended ESBLs (PER, VEB, SHV, GES, and TEM) among 600 isolates of \(P. \) aeruginosa cultured from patients at two hospitals in Tehran (16). The frequency of \(\text{bla}_{\text{PER}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{PER}}, \text{bla}_{\text{GES}}, \) and \(\text{bla}_{\text{TEM}} \) among the ESBL isolates (MIC >16) were 24%, 22%, 17%, 0%, and 9%, respectively. Isolates containing \(\text{bla}_{\text{PER}} \) were resistant to almost all tested antibiotics except imipenem. However, the frequency of the \(\text{bla}_{\text{OXA}} \) group of ESBL in our study was higher as compared with other authors, while only one isolate carried the gene for \(\text{bla}_{\text{CTX-M}}. \) 41 \(P. \) aeruginosa strains were isolated with ESBLs from several wards were collected over 9 months in 2003 and 2004 in a hospital in Warsaw, Poland (18). The isolates were recovered from patients with multiple types of infections, mostly respiratory tract and postoperative wound infections. All 41 isolates produced the PER-1 ESBL, originally observed in Turkey but recently also identified in several countries in Europe and the Far East. The \(\text{bla}_{\text{PER}}-1 \) gene resided within the \(\text{Tn}1213 \) composite transposons, which was chromosomally located. The PER, VEB, GES, and IBC beta-lactamases, have been found mainly in \(P. \) aeruginosa and at a limited number of geographic sites (16, 19). Similarly, in our study, the ESBL gene \(\text{VEB}-1 \) exhibited similar pattern of digestion in all 41 isolates. Therefore, it might be suggested that the gene was resided on class 1 integron. Prevalence of Class-A ESBL in Clinical Isolates of Acinetobacter baumannii and \(P. \) aeruginosa were studied by Oh et al [20]. It was found that the most prevalent class A ESBL genotype in \(\text{Acinetobacter baumannii} \) isolates was \(\text{bla}_{\text{PER}}-1 \) (n=6), and \(\text{bla}_{\text{SHV-12}} \) gene was also found in one \(P. \) aeruginosa isolate.

V. CONCLUSION

From results of present investigation, it can be concluded that \(\text{bla}_{\text{PER}}-1 \) and \(\text{bla}_{\text{CTX-M}} \) genes were the most and the least frequently isolated ESBL gene among the \(P. \) aeruginosa strains detected from burnt infected patients while, \(\text{bla}_{\text{OXA-10}} \) was the second most frequently isolated gene. They exhibited similar pattern of digestion of PCR products when digested with \(\text{EcoRl}, \text{Ddel} \) and \(\text{PVUII} \) restriction enzymes. The sequencing analysis further confirmed the results of PCR and revealed no mutation in the restriction sites of the above genes. The results also confirmed that these ESBL genes evolved from same clone and spread through the \(P. \) aeruginosa population by selective pressure of antibiotics that prescribed in this region.

ACKNOWLEDGMENT

Our sincere thanks to the authority of Kerman University of Medical Sciences, Kerman, Iran for awarding grant (number 18/1387) to Dr. Shakibaie MR and Microbiology Laboratory, Pasteur Institute of Iran for providing Lab. Facilities for this research.

REFERENCES

