The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth
J.E. Park, G.R. Kim, D.J. Yoon, C.H. Sin, I.S. Park, T.S. Bea, and M.H. Lee

Abstract—Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability, mechanical strength, and electrical properties. Therefore, there is interest in CNTs for not only electrical and mechanical applications, but also biological and medical applications.

In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV–vis absorbance and transmission electron microscopy (TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs.

The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antibacterial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Keywords—MWCNT, SDBS, surfactant, antibacterial.

I. INTRODUCTION

CNTs were discovered in 1991 as a byproduct of fullerene synthesis [1]. Multiwalled carbon nanotubes (MWCNTs) show some excellent properties, including high moduli of elasticity, high aspect ratios, excellent thermal and electrical conductivities, and optical and magnetic properties. Due to their excellent optical, electrical, and mechanical properties, carbon nanotubes enjoy a preeminent status in the panoply of nanomaterials, finding wide range of applications in biosensors [2], composites [3], field emission devices [4], electronic components [5], probe tips [6], etc. Delocalization of π-electrons renders them conducting and alleviates adsorption of various chemical moieties via π–π stacking interaction [7]. A high aspect ratio makes them prone to entanglement and bundling. Particularly, carbon nanotubes are bundled with strong van der Waals interaction energy of ca. 500 ev/μm of tube–tube contact [8]. Such high interaction energy renders CNT dispersion a challenging task. So, they need to be functionalized or modified to improve their dispersion ability via covalent or non-covalent attachment of functional groups. The non-covalent method of functionalization is preferred over covalent method because the pore textural properties of CNTs are not affected. This is because the π system of graphene sheets is undisturbed, meaning to say that the external surface area of the tubes will not be affected [9]. Indeed, non-covalent surfactant modification has become a frequently used approach for increasing CNT dispersions due to its simple modification procedures, involving only ultrasonication and centrifugation or filtration, and a capacity for preserving the nanotube structures and properties [10-15].

A wide variety of surfactants have been investigated to date for dispersion of carbon nanotubes, such as sodium dodecyl-benzene sulfonate (SDBS) [16], octyl phenol ethoxylate (Triton X-100) [17], hexadecyltrimethylammonium bromide (CTAB) [18], and sodium dodecyl sulfate (SDS) [19]. However, one usually needs high concentration of surfactants to obtain stable CNT dispersions, which is inconvenient for further CNT processing into composite materials. The introduction of suspensions containing high concentration of surfactants inside the resin/polymer matrices increases the viscosity drastically. This results in a higher viscosity profile, so for further applications like composite processing, the whole process needs to be optimized.

In this study, a surfactant SDBS was used to modify MWCNTs and increase their dispersity in the aqueous phase. Besides, the antibacterial activity of SDBS-treated MWCNTs was also reported. Streptococcus mutans (S. mutans) was used as the testing microorganism. Their antibacterial activity was investigated by determining the optical density (OD) growth curves. The mechanism for the bacterial inactivation of SDBS-modified MWCNTs was discussed.

II. MATERIALS AND METHODS

A. Purification of MWCNTs

MWCNTs were purchased from CNT CO. Ltd. (Korea) with average of 1.5mm; they synthesized using the chemical vapor deposition technique. Purification method was as follows. 100mg of as-pure MWCNTs were heated in air at 450°C for 90min. The heating MWCNTs were then introduced into a flask containing 6M HCl to remove the metal catalyst (Fe, Mo and Cr). Afterwards, the acid solution was filtered through a membrane filter and the filtered cake was transferred to a flask with 3M NaOH and heated under reflux at 100°C for at least 12h to remove the aluminum oxides. The resulting suspension was filtered and the filtered cake was washed with distilled water.
water (DW) until became pH7. Finally, the samples were dried in a vacuum at 55°C for 24h.

B. Preparation of SDBS-treated MWCNTs

In a procedure, 10 mg purified MWCNTs (p-MWCNTs) were added to 50mL SDBS (Sigma–Aldrich, its chemical structure is shown in Fig. 1) solution with concentration of 1wt.%. The dispersion was ultrasonicated for 4h to obtain the SDBS-adsorbed MWCNTs. The resulting suspension was centrifuged at 20,000g for 1h. With UV–vis characterization, the upper supernatant fluid was collected. In other cases, the solution was filtered through a membrane filter (0.20μm) and the filtered cake was washed three times with DW and dried in a vacuum at 55°C for 24h prior to use.

![Fig. 1 The chemical structure of SDBS surfactant](image)

C. Characterization of SDBS-treated MWCNTs

The dispersion of SDBS-treated MWCNTs was confirmed using a UV–vis spectrophotometer (Hitachi U-2800) operating between the ranges of 250–1000nm. In the first set of experiments, a baseline correction was carried out using a pure 1wt.% SDBS solution so that their absorbance could be subtracted from the MWCNT dispersions. In the second set of experiments, the baseline was equilibrated and the SDBS-treated MWCNTs were analyzed with the corresponding SDBS concentration.

A transmission electron microscopy (TEM, JEM-2010, JEOL, Japan) image was used to examine the SDBS-adsorbed MWCNTs. The samples were redispersed in DW at a concentration of 0.5mg/mL. A 10μL drop of the above suspension was placed onto a carbon-coated TEM grid (200mesh, purchased from TED PELLA INC.) and viewed under TEM.

D. Preparation of Bacterial Cells

S. mutans JC2 were grown in brain heart infusion (BHI) broth at 37°C under aerobic conditions and harvested in the midexponential growth phase. The cells were washed twice and resuspended in a saline solution (0.9% NaCl) to remove the residual macromolecules and other growth medium constituents.

E. SDBS-treated MWCNT Treatment to Bacterial Cells

150 μL of the bacterial cell suspensions were introduced into 1.5 mL micro centrifuge tubes. 50 μL of the sample suspensions with a desired concentration was added into the tubes. The control samples contained 150 μL of the cell suspension with 50 μL of DW. The tubes were kept rotating on a shaker at 170 rpm for the required treatment times at room temperature.

F. OD Growth Curve Measurements

After treatment, the mixtures in the tubes were removed and placed into 4 mL of BHI broth. The resulting samples were then incubated at 37 °C in an incubator. Bacterial cell growth was monitored by measuring the OD at 600 nm every 2 h on a spectrophotometer. The OD growth curves were obtained by plotting the OD values vs. the growth time.

G. SEM Imaging

The samples were filtered through a 0.20 μm PVDF membrane (Millipore), fixed with 2.5% glutaraldehyde and post-fixed in 1% osmium tetroxide. Subsequently, the samples were dehydrated in a graded series of ethanol (30%, 50%, 70%, 80%, 90%, 95% and 100%, v/v) and dried at room temperature. The dried samples were then sputter-coated with gold for the field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan) examinations.

H. Statistical Analysis

All experiments were carried out in triplicate and are expressed as the mean ± standard deviation (SD). Single-factor analysis of variance (ANOVA) was used to assess the statistical significance of the results. A p value < 0.05 was considered significant.

III. RESULTS AND DISCUSSION

Bundled CNTs are not active in the UV-vis region. Only individual CNTs absorb in this region [19]. So, a dispersion of CNTs can be characterized by UV-vis absorption spectroscopy. Fig. 2 show photographs of D.W mixed with pure MWCNT(A) and SDBS treated MWCNT(B). also Fig. 3 show the dispersion ability of p-MWCNTs and surfactant-modified MWCNTs detected using a UV–vis spectrophotometer at 500 nm. Absorbance values were recorded at 500nm as reported in previous studies [20-24].

![Fig. 2 Photograph of (A) pure MWCNTs, (B) SDBS treated MWCNTs](image)
With the assistance of surfactants, the solubility of the MWCNTs was higher than that in the absence of surfactants. CNTs suspended in water are closely related to the adsorption capacity of the surfactants. This experimentally observed trend for dispersing power of surfactants can also be explained on the basis of their chemical structures. In order to disperse nanotubes in water, surfactant molecules orient themselves in such a fashion that hydrophobic tail groups face toward the nanotube surface while hydrophilic head groups face toward the aqueous phase, producing a lowering of the nanotube/water interfacial tension. Thus, the dispersing power of the surfactant depends on how firmly it adsorbs onto the nanotube surface and produces by this adsorption energy barriers of sufficient height to aggregation. Molecules having the benzene ring structure adsorb more strongly to the graphitic surface due to π–π stacking type interaction [11], [25]. Generally, hydrophobic tail groups tend to lie flat on the graphitic surface because graphitic unit cells match well with the methylene units of hydrocarbon chains[26]. Thus, efficiency of adsorption and consequently dispersing power of surfactants are greatly affected by the tail length of the surfactant. Longer tails means high spatial volume and more steric hindrance, thus providing greater repulsive forces between individual carbon nanotubes [27]. Besides this, surfactants with unsaturated bonds in their tail groups contribute more toward nanotube dispersion [27].

Fig. 3 UV-vis spectra

Fig. 5 shows the representative OD growth curves of S. mutans after being treated with the SDBS-MWCNTs for 60 min. The antibacterial activity of surfactant-modified MWCNTs increases.

Fig. 6 SEM image of s. mutans treated (A) pure MWCNTs, (B) SDBS MWCNTs, (C) high magnification of image (B)

Fig. 4 show the TEM images of as-p-MWCNTs, p-MWCNTs and surfactant-modified MWCNTs. Large agglomerates and closely packed CNTs are prevalent in the pristine state (A,B), which become significantly loosened and highly dispersed after the surface treatment with SDBS surfactant without the breakage of MWCNTs (C). This suggests that the use of an SDBS surfactant rise to a better dispersion power.
IV. CONCLUSION

The dispersion ability of surfactant-treated MWCNTs and its antibacterial activity to S. mutans were investigated. Both the UV–vis absorption and TEM images suggest that the surfactant treated have an ability to disperse MWCNTs in the aqueous phase. The OD growth curves confirmed that the surfactant-treated MWCNTs showed high antibacterial activity. Moreover, the SEM images also showed the well interactions between the bacterial cells and surfactant-treated MWCNTs. The binding of surfactant molecules to MWCNTs increases its dispersing ability in aqueous solution. Well dispersed CNT increased the antibacterial activity.

ACKNOWLEDGMENT

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0028709) and 핵심.

REFERENCES