Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider
Liu Jian-xia, Hou Zhong-xi and Chen Xiao-qing

Abstract—The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.

Keywords—Aerodynamic, CFD, Thermodynamic, Waverider

I. INTRODUCTION
Hypersonic Glide Vehicle has been a hot topic in the aerospace area in terms of the high speed and long range performances [1]–[3]. Due to the high lift-to-drag ratio in hypersonic flow, the waverider is proved to be a remarkable basic configuration for HGV. The waverider which is designed with a theory infinitely sharp leading edge will lead to an infinite value of the temperature. In order to decrease the aerodynamic heating on the surface, the sharp leading edge needs to be blunted, and then the flow characteristics and the aerodynamic performance might change. Reference [4]–[8] studied the rarefied gas effect of hypersonic vehicles, and presented some methods to calculate the aerodynamic performance in the rarefied region. Based on the wind tunnel experiment and flight data, [9]–[13] studied the transition phenomena in hypersonic flows around flat plate, swept cylinder and cone, and summarized series of transition criteria. Reference [14]–[24] validated the high lift-to-drag ratio characteristic of a waverider in hypersonic flow by means of estimation, CFD and experiment methods. In this paper, coupled with the glide trajectory and blunted waverider configuration, we investigated the typical flow characteristics of the HGV, including the rarefied gas effect and transition phenomenon along the reference glide trajectory. Based on these analyses, the vehicle’s aerodynamic and thermodynamic performances under a typical condition were obtained using CFD method.

II. CONFIGURATION BASED ON BLUNTED WAVERIDER

The waverider is hypersonic configuration which is designed to have shock wave attached to the leading edge of the vehicle, thus preventing the high pressure behind the shock wave to leak from the lower surface to the upper surface. In this paper, the basic waverider is generated from a reference flow field around a hypersonic cone using the method in [25]. The design Mach number is 10, the cone’s half-angle is 12°, the length is 3.5m, and the divergence angle is 45°. The sharp leading edge of original waverider is blunted with 3cm, which is calculated with Fay-Riddell formula for aerodynamic heating, as shown in Fig. 1.

Fig. 1 The configuration of the hypersonic glide vehicle

III. FLOW CHARACTERISTICS ON GLIDE TRAJECTORY

Because of the good aerodynamic performance of waverider configuration, HGV’s trajectory is different from conventional vehicles, such as hypersonic reentry missile and manned spacecraft. Fig. 2 gives one reference trajectory of hypersonic glide vehicle. We can see that the values of height and velocity are fluctuating with time along the glide trajectory. The flow characteristics of the HGV along the trajectory might be changed. Based on the reference trajectory and the basic configuration shown in Fig. 1, we investigate the typical flow characteristics of the HGV, including the rarefied gas effect and transition phenomenon.

A. Rarefied Gas Effect
In Fig. 2, we can see that the HGV flies in a large height range from the ground to the altitude of 165 km. When the vehicle flies at high altitude, the assumption of continuous flow...
is not reasonable any more. In order to confirm the flow mechanism and boundary conditions for the HGV at each altitude, it is necessary to separate the rarefied region from the continuum flow. One parameter that characterizes rarefied gas effect is the Knudsen number, which is the ratio of molecular mean free path to a characteristic length. It can be calculated as below [4]:

\[
Kn = 1.26 \times \sqrt{\frac{M_\infty}{\text{Re}_\infty}} \times \frac{L}{\delta}
\]

where \(\gamma \) is the specific heat ratio of air, \(M_\infty \) is the Mach number of free stream, \(\text{Re}_\infty \) is the Reynolds number, \(L \) is the characteristic length, and \(\delta \) is the thickness of boundary layer. Once the Knudsen number is greater than 0.01, the rarefied gas effect should be considered.

As shown in Fig. 3, if the altitude is higher than 68 km, the Knudsen number is always higher than 0.01, the assumption of continuous flow is not reasonable any more. It means that the rarefied gas effect should be considered for the HGV if the vehicle flies above 68km. We also note that the density of atmosphere is less than \(10^{-3} \text{kg/m}^3 \) when the altitude is higher than 68km; the aerodynamic heating of the HGV is not serious in this region. More attention should be paid to the trajectory where the altitude is lower than 68km.

B. Transition phenomenon

In the hypersonic flow field, the convective heat transfer is very serious when the flow is turbulent. It is necessary for us to study the transition phenomenon for the HGV based on blunted waverider configuration before numerical simulation.

Based on the wind tunnel experiment data, [9]–[12] studied the transition phenomena in hypersonic flow and summarized series of transition criteria. The transition Reynolds number of Sheets [13] shows a better agreement with the flight data and the \(x^3 \) method than others. The relation can be expressed as:

\[
\text{Re}_\text{tr} = 6400 \times (M_e)^{1.66}
\]

where \(M_e \) is the edge Mach number.

Using (2), we study the transition phenomena on the surfaces of the HGV with more attention to the moment when the vehicle’s speed is hypersonic. Fig. 4 shows the transition Reynolds number and the local Reynolds number by the characteristic size of the HGV’s length on the upper surface. Note that the transition Reynolds number is greater than the local Reynolds number on the upper surface almost all the time. So we treat the flow of upper surface as laminar in this paper.
In this section, the numerical method used in this paper is introduced. The governing equations for the steady-state full Navier-Stokes equations in conservation form [25] are:

\[
\frac{\partial U}{\partial t} + \frac{\partial (E, - E_0)}{\partial x} + \frac{\partial (F, - F_0)}{\partial y} + \frac{\partial (G_1, - G_1)}{\partial z} = S
\]

where the subscript \(i\) denotes the term that appears in the equations of motion for inviscid flow, and the subscript \(v\) denotes the term of the viscous flux vectors, i.e., terms unique to the equations of motion when the viscous and the heat-transfer effects are included. The vector of the chemical source terms is represented by \(S\). Because chemical reactions are not involved here, \(S\) is set to zero. If written in vector form, the governing equations would be:

\[
\begin{align*}
E_i = \left[\begin{array}{c} pu_v^2 + p \\ pv \\ puv \\ (pe + p)_u \\
\end{array} \right], \\
F_i = \left[\begin{array}{c} \rho_v \\ pv \\ p v^2 + p \\ (pe + p)_v \\
\end{array} \right], \\
G_i = \left[\begin{array}{c} \rho_w \\ pw \\ p w^2 + p \\ (pe + p)_w \\
\end{array} \right],
\end{align*}
\]

where

\[
\begin{align*}
E_i &= \left[\begin{array}{c} 0 \\ r_{u_v} \\ r_v \\ ur_{u_v} + vr_{u_v} + wr_{u_v} + q_i \\
\end{array} \right], \\
F_i &= \left[\begin{array}{c} 0 \\ r_{u_v} \\ r_v \\ ur_{u_v} + vr_{u_v} + wr_{u_v} + q_i \\
\end{array} \right], \\
G_i &= \left[\begin{array}{c} 0 \\ r_{w} \\ r_v \\ ur_{u_v} + vr_{u_v} + wr_{u_v} + q_i \\
\end{array} \right],
\end{align*}
\]

\[
\begin{align*}
r_{u_v} &= 2\mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \nabla \cdot V', \\
r_{v} &= 2\mu \frac{\partial v}{\partial y} - \frac{2}{3} \mu \nabla \cdot V', \\
r_{w} &= 2\mu \frac{\partial w}{\partial z} - \frac{2}{3} \mu \nabla \cdot V', \\
r_{u_v} &= \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right), \\
r_{v} &= \mu \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right), \\
r_{w} &= \mu \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial x} \right).
\end{align*}
\]

where \(\mu\) is the coefficient of viscosity which can be calculated by Sutherland law:

\[
\mu = 1.485 \times 10^{-6} \frac{T^{1.5}}{T + 110.4}
\]

and \(k\) denotes thermal conductivity which is determined by Prandtl number:

\[
k = \frac{\mu C_p}{Pr}
\]

The governing equations are discretized and numerically integrated based on a finite-volume approach. Inviscid flux is calculated by AUSM+ scheme, and the viscous flux is calculated by the central difference scheme. Euler backward difference method with fully implicit scheme is used for temporal integration. The wall boundary conditions are consist of a non-slip condition, a zero pressure gradient condition normal to the surface and a radiative wall with the emissivity of 0.8 which is the average value of silicon carbide coating material. Inflow boundary conditions are fixed with the values of free stream, and outflow boundary conditions are obtained using 1st extrapolation. The grid convergence study in [26] showed that heat flux in hypersonic flow would converge if the value of cell Reynolds number is less than or equal to 3.

In order to verify the algorithm described above, a case with experiment data [22] is chosen and simulated in this paper, which is a hypersonic viscous flow field around a cylinder. The computational condition is shown in TABLE I.

TABLE I

<table>
<thead>
<tr>
<th>(R(m))</th>
<th>(Ma_\infty)</th>
<th>(P_\infty (N/m^2))</th>
<th>(T_\infty (K))</th>
<th>(T_f (K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.038</td>
<td>16.34</td>
<td>82.95</td>
<td>52</td>
<td>294.4</td>
</tr>
</tbody>
</table>
As shown in Fig. 6, the experiment data of stagnation heat transfer is about 5.90×10^4 W/m2 while CFD result is 5.93×10^4 W/m2. The CFD result is in a good agreement with the experimental data along the wall, which shows that the numerical method used in the paper would be appropriate for the flow simulation of the HGV.

V. COMPUTATIONAL RESULTS AND DISCUSSION

A. Flow condition

Based on the analysis results above, we decide to make an in-depth study on the aerodynamic and thermodynamic performance of the HGV under a typical flow condition which is shown in TABLE II. Under this condition, the entire surfaces of the HGV are wetted by the laminar flow. As shown in Fig. 7, the computational grid is generated based on the rule of [26].

<table>
<thead>
<tr>
<th>H(km)</th>
<th>V(m/s)</th>
<th>α (°)</th>
<th>P(N/m2)</th>
<th>T(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3171.89</td>
<td>2</td>
<td>287.144</td>
<td>250.35</td>
</tr>
</tbody>
</table>

TABLE II

COMPUTATIONAL CONDITION OF THE HGV

B. Aerodynamic performance

The pressure contours is shown in Fig. 8. Because of the blunt leading edge, we can see that a well defined bow shock structure surrounding the entire vehicle is formed. The air leaks out from the lower surface to the upper surface along the leading edge. The pressure around the nose is much higher than other region.

Fig. 9 shows the pressure distribution in the nose region. We can see that the bow shock stands off the leading edge by some distance and allows high pressure air to spill from the lower surface to the upper surface, which would reduce the lift, increase the drag, and then decrease the overall aerodynamic efficiency of the HGV. As shown in Fig. 10, the shock distance calculated by the Billig’s correlations for sphere-cone shapes is 0.1477R, and for cylinder-wedge shapes is 0.4045R. The shock distance simulated in this paper of the HGV is between 0.1477R and 0.4045R. The result indicates that the flow of the nose region can not be simply regarded as the flow around a cylinder or sphere with a same radius, and the correction should be added. More attention should be paid to the flow mechanism of this region. Fig. 11 shows the pressure distribution of the cross-section. It is clear to see that the pressure on the lower surface is much higher than the upper surface, which is one of the most important factors to retain the high lift performance for the HGV though the air leaks from the leading edge.

Fig. 7 Computational grid for hypersonic glide vehicle

Fig. 8 Pressure contours around the HGV

Fig. 9 Pressure Distribution of the nose region

Fig. 10 Pressure distributions along the stagnation line
In TABLE III, the aerodynamic coefficient of the HGV is listed in detail. Almost all lift is contributed by the high pressure on lower surface. As to the drag, the inviscid force occupies 91.4%, in which the blunt leading edge, the upper and lower surfaces contribute 21.767%, 0.063%, 69.57%, respectively. The blunt leading edge has a significant influence on the inviscid drag of the HGV. As to the viscous drag, the blunt leading edge, the upper and lower surfaces contribute 2.29%, 2.06%, 4.25%, respectively. Then the lift-to-drag ratio is calculated to be 2.69.

Though the aerodynamic performance of the HGV is decreased after blunted, the lift-to-drag ratio obtained in this paper is proved to be enough for the need of glide trajectory [27].

C. Thermodynamic performance

The heat flux on the surfaces of the HGV is shown in Fig. 12. Note that the heat transfer on the surface is lower than leading edge. Though the heat flux is about 9.0×10^5 W/m2 at the stagnation point of the HGV, the heat flux on the surface is less than 5.0×10^4 W/m2 and 80% of the leading edge is less than 2.625×10^5 W/m2. Fig. 13 gives the radiative equilibrium temperature distribution on the vehicle, including the upper surface, lower surface and the leading edge. The temperature of upper surface ranges from 700K to 1000K, and the lower surface is between 900K and 1200K. Meanwhile, the range of most leading edge is from 1400K to 1500K, and the temperature of the nose region is about 2000K.

Based on the analysis above, the heat transfer of the HGV is not serious except the nose region near the stagnation point. To face the high temperature at the nose region, we can use carbon-carbon to fabricate the nose.

TABLE III

<table>
<thead>
<tr>
<th></th>
<th>Lift Coefficient (Total Lift Coefficient)</th>
<th>Drag Coefficient (Total Drag Coefficient)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inviscid</td>
<td>Viscous</td>
</tr>
<tr>
<td>Leading Edge</td>
<td>0.001221 (2.87%)</td>
<td>0.003444 (21.767%)</td>
</tr>
<tr>
<td>Upper Surface</td>
<td>-0.0078946 (-18.53%)</td>
<td>0.000011 (0.063%)</td>
</tr>
<tr>
<td>Lower Surface</td>
<td>0.049276 (115.66%)</td>
<td>0.011013 (69.57%)</td>
</tr>
<tr>
<td>Total</td>
<td>0.0426024 (100%)</td>
<td>0.0158293 (100%)</td>
</tr>
</tbody>
</table>

C. Thermodynamic performance

The heat flux on the surfaces of the HGV is shown in Fig. 12. Note that the heat transfer on the surface is lower than leading edge. Though the heat flux is about 9.0×10^5 W/m2 at the stagnation point of the HGV, the heat flux on the surface is less than 5.0×10^4 W/m2 and 80% of the leading edge is less than 2.625×10^5 W/m2. Fig. 13 gives the radiative equilibrium temperature distribution on the vehicle, including the upper surface, lower surface and the leading edge. The temperature of upper surface ranges from 700K to 1000K, and the lower surface is between 900K and 1200K. Meanwhile, the range of most leading edge is from 1400K to 1500K, and the temperature of the nose region is about 2000K.

Based on the analysis above, the heat transfer of the HGV is not serious except the nose region near the stagnation point. To face the high temperature at the nose region, we can use carbon-carbon to fabricate the nose.

VI. CONCLUSIONS

To study the performance of hypersonic glide vehicle which is based on the waverider configuration with blunt leading edge, this paper analyzed the flow characteristic of a HGV, including the rarefied gas effect and transition phenomenon along the trajectory. The aerodynamic and thermodynamic performances were studied by numerical simulation.
The hypersonic glide vehicle based on blunted waverider retains the high lift-to-drag ratio, and the heat transfer on the surfaces of a HGV is not serious except the nose region near the stagnation point. Waverider configuration remains a valuable candidate for hypersonic glide vehicle though the leading edge is blunted.

Further work will be focused on the flow mechanism of nose region, the blunt method for hypersonic glide vehicle and the detailed design of temperature protection system.

REFERENCES

