Design a single-phase BLDC Motor and Finite-Element Analysis of Stator Slots Structure Effects on the Efficiency

Abdolamir Nekoubin

Abstract—In this paper effect of stator slots structure and switching angle on a cylindrical single-phase brushless direct current motor (BLDC) is analyzed. BLDC motor with three different structures for stator slots is designed by using RMxprt software and efficiency of BLDC motor for different structures in full-load condition has been presented. Then the BLDC motor in different conditions by using Maxwell 3D software is designed and with finite element method is analyzed electromagnetically. At the end with the use of MATLAB software influence of switching angle on motor performance investigated and optimal angle has been determined. The results indicate that with correct choosing of stator slots structure and switching angle, maximum efficiency can be found.

Keywords—Permanent magnets, Switching angle, BLDC motor

I. INTRODUCTION

CONVENTIONAL DC motors are highly efficient, however, their only drawback is that they need a commutator and brushes which are subject to wear and require maintenance. The above mentioned deficiency of the conventional solution can be overcome by the new type of DC drive based on brushless DC motors operating without mechanical transmission [1]. The brushless DC motors (Fig. 1) are permanent magnet motors where the functions of commutator and brushes were implemented by solid state switches [2]. The brushless DC motors are distinguished not only by the high efficiency but also by their no maintenance.

As far as rotary motor geometry is concerned two types of structures are met:

Cylindrical and disc structure, According to [3] the topologies of cylindrical motors may be classified as follows:
1. Cylindrical motor with internal rotor
2. Cylindrical motor with external rotor

Recently, brushless DC motors have been widely used in large-scale industry applications such as automotive, aerospace, home appliances and many industrial equipment and instrumentation for various applications [4], [5]. The construction of modern BLCD motors is very similar to the ac motor, known as the permanent magnet synchronous motor. BLDC motors come in single-phase [6], two-phase and three-phase configurations [7]. The stator of a BLDC motor consists of stacked steel laminations with windings placed in the slots that are axially cut along the inner periphery or around stator salient poles. The rotor is made of permanent magnets and can vary from two to eight pole pairs with alternate north (N) and south (S) poles. Based on the required magnetic field density in the rotor, the proper magnetic material is chosen to make the rotor. Ferrite magnets are traditionally used to make permanent magnets. As technology advances, rare earth alloy magnets are gaining popularity. In order to make a BLDC motor rotate, the stator windings should be energized in a sequence. It is essential to know the rotor position in order to understanding as to which winding must be energized [8]. The magnetic flux generated by the current in the stator winding can increase or decrease the flux density in the stator depending on the rotor position, leading to decrease or increase in inductance due to the saturation of the stator. By applying positive and negative voltage pulses consecutively and measuring the difference in inductance, it can be indicated which magnetic polarity the phase winding is facing [9].

Consecutively and measuring the difference in inductance, it can be indicated which magnetic polarity the phase winding is facing. As electromagnetic forces result from the interaction between the rotor and the stator through the magnetic field in the air-gap space in between, an accurate prediction of the instantaneous magnetic fields is essential. When designing electrical motors, both the analytical and numerical methods, e.g., finite-element methods (FEM) are used frequently. Even as FEM is well suited for failure analysis and design validation purposes, analytical methods are useful as efficient tools for quick evaluation of the motor performance with given settings of design parameters. Thus, developments of effective analytical approaches for BLDC motor design syntheses continue to attract great attention from researchers, e.g., [10]. The synthesized procedure to achieve the flux density distribution for special motor with the help of numerical methods has been widely used [11]. For instance, it can be used to estimate the back electromotive force (EMF) and the inductance of the stator windings [12], the frequency spectra of the magnetic induced forces which signify the magnetically induced vibration sources [13]-[14], the running torque, and some other aspects of the permanent magnet (PM) motor performances [15], [16]. In [17], is presented the computational method for analyzing a BLDC motor taking into consideration the freewheeling diodes and dc link voltage ripples using a time-stepped finite element method. The results show that the proposed analysis method is suitable for analyzing a BLDC motor by comparing the predicted and the measured phase currents and dc link voltage ripples with...
experimental data.

In [18], a new structure of brushless DC motor with passive magnetic bearings is introduced. The magnetic suspension of the rotor is realized by using the proposed passive magnetic bearings and does not need to be controlled. The axial stability of the rotor can be obtained by the radial force of the passive magnetic bearings and by the instinctive behavior of the PM motor in axial alignment of the stator and rotor. The radial magnetic suspension of the machine rotor can be realized by the optimal design of the air-gap length, thickness and axial length of the PM rings both of the passive magnetic bearings and the BLDC motor based on the accurate calculation of radial and axial forces. A new type of PMSM with Opposite-rotation Dual rotors (ODR) has been proposed to improve operation performance of underwater vehicle (UV) propulsion system. Comparing to two main driving modes (double rotors DC motor and conventional motor with planetary gears), the system performance improve greatly due to the remove of brush, commutator and gears. Furthermore, because of rare earth magnets used in this machine, the efficiency and torque density has been improved. The ODR machine can provide two independent opposite torques with single power supply due to special structure, so it can drive counter-rotation propeller directly [19].

The objective of the paper is to analyze the performance and efficiency of the BLDC motor (cylindrical type with internal rotor), stator coils of the motor can be connected in single-phase or poly-phase systems. These connections imply the single-phase or poly-phase inverters which supply the winding. The type of winding influences the performance of the motor. In this paper the performance of the BLDC motor with single-phase connections of the stator coils are studied. So far only three-phase motors were considered and no study for single-phase has been done. The single-phase motor develops the torque with lower ripple that it can be applied for wheelchair. For experimental results, an inner rotor BLDC motor (Laboratory) with rated powers of 1 kW (Fig. 1) have been manufactured and tested by coupled generator (as load).

II. DESIGN OF BLDC MOTOR

Use The BLDC considered for analysis here is a single-phase cylindrical motor with internal rotor as shown in Fig. 2.

![Fig. 2 Inner Rotor Brushless DC motor designed with RMxpert](image2)

Structure of stator slots is one of effective parameters on performance of BLDC. For analyzing effects of stator slots structure on motor performance, rotor of BLDC motor (Fig. 3) with RMxpert software is designed.

![Fig. 3 Rotor of Brushless DC motor](image3)

Then stator with three different structures for stator slots is simulated. The efficiency of BLDC is calculated as follows:

\[\text{eff} = \frac{\text{Pin}}{\text{Pout}} \] \hspace{1cm} (1)

\[\text{Pout} = \text{Pin} - (\text{Pfw} - \text{Pcu} - \text{Pt} - \text{Pfe}) \] \hspace{1cm} (2)
III. Finite-Element Analysis of BLDC Motor

The basic physical equations that describe the electromagnetic fields are given by Maxwell’s equations [19]:

\[\nabla \cdot \mathbf{B} = 0 \] \hspace{1cm} (3)

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \] \hspace{1cm} (4)

\[\nabla \times \mathbf{H} = \mathbf{J} \] \hspace{1cm} (5)

Equations, (3)-(5) are presented in terms of the vector field variables \(\mathbf{E}, \mathbf{B}\) and \(\mathbf{H}\), but usually these equations are solved using vector potential formulation. The magnetic vector field \(\mathbf{B}\) can be written in the term of the vector potential as:

\[\mathbf{B} = \nabla \times \mathbf{A} \] \hspace{1cm} (6)

Also relation between \(\mathbf{H}\) and \(\mathbf{B}\) express as follow:

\[\mathbf{H} = r \cdot \mathbf{B} \] \hspace{1cm} (7)

Equation of vector potential for magnetic field is obtained by substituting equations (6) and (7) in equation (5):

\[\nabla \times (r \nabla \times \mathbf{A}) = \mathbf{J} \] \hspace{1cm} (8)

To solve equations (8) a numerical technique is necessary. Many techniques are available; the most common techniques used are Finite Difference Methods (FDM), Finite Element Methods (FEM), and Boundary Element Methods (BEM). In this paper, the finite element method is chosen. The commercial software selected for this study was Maxwell® 3D, because it is able to solve the coupled electromagnetic and mechanical dynamic equations. This software is also able to solve two and three-dimensional transient electromagnetic problems. In order to solve the model developed in this paper, the three-dimensional version was used. This software required four basic steps to arrive to the problem solution. In the first step the model is drawn and the material and mechanical properties set. Second, the domain is meshed and the boundary conditions are set. Third, the resulting matrix system for the problem is solved and fourth, the post processing analysis is performed. The Maxwell software only uses a triangular element to mesh the domain and linear interpolation functions to approximate the solution.

IV. Simulation and Results

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Specifications Adopted For The Simulated BLDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>RATING VALUES</td>
</tr>
<tr>
<td>Rated Power</td>
<td>1</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>220</td>
</tr>
<tr>
<td>Number of Poles</td>
<td>4</td>
</tr>
<tr>
<td>Rated Speed</td>
<td>1500</td>
</tr>
<tr>
<td>Number of Stator Slots</td>
<td>24</td>
</tr>
<tr>
<td>Outer Diameter of Stator</td>
<td>120</td>
</tr>
<tr>
<td>Inner Diameter of Stator</td>
<td>75</td>
</tr>
<tr>
<td>Minimum Air Gap</td>
<td>0.5</td>
</tr>
<tr>
<td>Inner Diameter of rotor</td>
<td>26</td>
</tr>
<tr>
<td>Length of Rotor</td>
<td>65</td>
</tr>
<tr>
<td>Thickness of Magnet</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Design1: In this case, stator slots are as shown in (Fig.3). In this structure end of slots is arcuate.

Fig. 4 Slot structure of Brushless DC motor at first state

After designing stator with this type of structure and simulating motor in full-load condition the efficiency is reached to 79.6% that is not suitable for BLDC motor (Fig.5).
The BLDC motor is designed and simulated with MAXWELL3D software for analyzing electromagnetically. Fig.6 shows the finite element mesh of the analyzed model.

Fig.6 Finite element mesh of BLDC at first state

Fig.6 shows the distributions of the flux density, red stands for the largest flux density and blue is the smallest. Fig.7 shows that the flux density of the inner rotor is apparently larger than that of other areas. Values of flux density in the air gap and inductance leakage are shown in table II.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air gap flux</td>
<td>0.661</td>
<td>T</td>
</tr>
<tr>
<td>Inductance leakage</td>
<td>0.00381</td>
<td>H</td>
</tr>
</tbody>
</table>

Design2: In this state, BLDC motor is designed by changing structure of stator slots according (Fig.8) in this structure length of primary edge is increased. Efficiency of motor is shown in (Fig.9).

Fig.8 Slot structure of Brushless DC motor at second state

It is clear from the fig. 9 that by changing stator slots structure efficiency is increased about two percent but still this efficiency is not suitable for BLDC motor. The numerical model is developed with the objective of analyzing the behavior of the BLDC motor electromagnetically. Finite element mesh of the analyzed model and distributions of the
flux density are shown in Fig.10 and Fig.11 respectively. It clear from the results of table III that flux density in air gap is increased and inductance leakage in motor is decreased that cause to increasing efficiency.

Fig. 10 Finite element mesh of BLDC at second state

Fig. 11 The flux density of BLDC at second state

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air gap flux</td>
<td>0.675</td>
<td>T</td>
</tr>
<tr>
<td>Inductance leakage</td>
<td>0.00272</td>
<td>H</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>THE RESULTS OF FINITE ELEMENT ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Air gap flux</td>
</tr>
<tr>
<td>Inductance leakage</td>
</tr>
</tbody>
</table>

Design3: In this state against two previous cases depth of slots is increased and also end of stator slots are flatted, stator slots are as shown in (Fig.12).

Fig. 12 Slot structure of Brushless DC motor at third state

Fig. 13 Efficiency of Brush less DC motor at third state

Fig.13 shows efficiency of simulated motor. The results indicate that the efficiency in compared with two previous states is increased significantly.

The numerical model is developed with the objective of examining the behavior of the BLDC. Finite element mesh of the analyzed model and distributions of the flux density are shown in Fig.14 and Fig.15 respectively. It clears from the results of table. IV that flux density in air gap is increased about 0.03 Tesla and inductance leakage in motor is decreased that cause to increasing efficiency.

Fig. 14 Finite element mesh of BLDC at third state
The results shows that stator slots play an important role in improving efficiency BLDC motor and by changing the structure of stator slots efficiency will be changed. Of course for more improvement of motor performance switching angle of inverter should be analyzed and optimal angle should be determined.

V. INFLUENCE OF SWITCHING ANGLE ON MOTOR PERFORMANCE

Due to the high-speed operation, the winding inductance causes a significant phase delay in the current waveform. The results in the current and the emf waveforms being out of phase, and a negative torque component is generated, with a consequent reduction of the overall torque. In order to get motor better performance Phase commutation advanced is often employed. In DC brush motor the commutation angle is determined by the position of brushes and is kept constant. In BLDC motors the switching angle may vary accordingly to the controller of the inverter that is used. The supply-inverter-motor circuit model is shown in Fig.16.

The inverter considered for the brushless motor with two-phase winding is shown in (Fig.17). The position sensors are placed between the coils in the intervals of 90 degree. These sensors sense the position of the rotor and they trigger the transistors so that they switch on the respective stator winding.

As the switching angle is advanced, the difference between back-emf and the supply voltage increases, and the torque thereby increases. However, there exists an optimal advanced angle, beyond which the drive performance deteriorates. The simulation was done for the following switching angles \(\beta = -20^\circ, -30^\circ, -40^\circ, -45^\circ \)

The results of simulation were plotted in the form of characteristics of average values of the efficiency, input current and mechanical power output shown in Figs 18, 19 and 20.
when switched much earlier and the motor efficiency is minimum. Hence, care should be taken in choosing the best structure for permanent magnets which yields maximum efficiency. It concluded from finite element method that the largest flux density and the smallest inductance leakage is the result of the third case. A study done on the influence of switching angle on motor performance shows that motors operate better when the windings are switched ON earlier with respect to the emfs induced in them. It means the inverters should operate at the advanced switching angle if voltage inverters are applied.

VI. CONCLUSION

The numerical model was developed with the objective of examining the behavior of the BLDC motor. It can be concluded that stator slots play an important role in improving efficiency BLDC motor. By changing the structure of stator slots efficiency is changed. Hence, care should be taken in choosing the best structure for permanent magnets which yields maximum efficiency. It concluded from finite element method that the largest flux density and the smallest

REFERENCES

