Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, and Farzad Towhidkhah

Abstract—Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG’s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna’s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna’s method.

Keywords—Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

I. INTRODUCTION

An electrocardiogram—abbreviated as EKG or ECG—measures the electrical activity of the heart. The timing between the onset and offset of particular features of the ECG (referred to as an interval) is of great importance since it provides a measure of the state of the heart and can indicate the presence of certain cardiological conditions. Due to the time consuming nature of manually annotating the ECG by cardiologists, different automated methods have been proposed to overcome this problem. Here, we first give a brief review of some of these methods before describing our new approach based on Adaptive piecewise constant approximation [1] and Piecewise derivative dynamic time warping (PDDTW) for ECG segmentation.

A very successful approach was first proposed by laguna et al. [2] which was based on second order band pass filtering the ECG and then differentiating it. In the end different waves would be detected based on their zero-crossings, and finding the nearest points exceeding empirical thresholds.

Segmentation of ECG based on Fourier transforms were implemented by Sahamabi [3] using the first four transforms. Murthy and Niranjan [4] used the DFT to segment the ECG. In [5] Vullings et al. proposed a method of ECG segmentation using Dynamic time warping, based on pre-filtering the signal and approximating the filtered signal with lines and using DTW for the final segmentation of the ECG. Different approaches to ECG segmentation have also been implemented using Hidden markov models by Clavier and Boucher [6]. In [7] Graja and Boucher use a multiscale hidden markov model applied to segment the ECG. Another method was proposed by Crouse et al. [8] using a combination of Wavelet and Hidden markov models. Recently, Hughes et al. [9] have proposed a segmentation method using Semi-Supervised Learning of Probabilistic Models which is based on the EM algorithm for maximum likelihood estimation, which can be used to learn probabilistic models from subjectively labeled data.

A problem with probabilistic models is the difficulty with HMMs is to determine suitable values for the different parameters: the initial state probabilities, the transition probabilities between states, and the output probabilities of the slope and the amplitude. Another significant limitation of the standard hidden Markov model is the manner in which it models state durations. Thus for a given ECG waveform the decoded state sequence may contain many more state transitions than are actually present in the signal. The resulting HMM state segmentation is then likely to be poor and the resulting QT and PR interval measurements unreliable. Although algorithms exist to overcome these limitations [10] but they are still sensitive to initial conditions and choosing the right probability density for the duration of each state.

This paper which is an extension of [5] will introduce a fast method based on Adaptive piecewise constant approximation method and Piecewise derivative dynamic time warping for automated ECG segmentation. The results will be evaluated...
on the QT database [11] and compared to Laguna’s approach [2].

II. METHOD

The method consists of the following steps: first, we perform some pre-filtering to remove high frequency noise, and next we approximate the filtered signal by the Adaptive piecewise constant approximation method. Using a standard peak QRS detection algorithm from the literature, we divide the ECG signal into separate heartbeats. Finally, every heartbeat is compared using DDTW with a set of P, QRS and T wave templates, and the best matches are selected for the detection of the fiducial points.

A. Preprocessing

We first apply a moving average filter of order 5 to the signal. This filter removes high frequency noise like interspersions and muscle noise. Then, drift suppression is applied to the resulting signal. This is done by a high pass filter with a cut off frequency of 1Hz. Finally, a low pass Butterworth filter with a limiting frequency of 30 Hz is applied to the signal in order to suppress needless high-frequency information even more. Next, the APCA algorithm is used to adaptively represent the ECG signal.

The primary segmentation is done with the Pan and Thompson’s QRS detector [12], which detects the position of the QRS complex in the ECG. Next, we select a region around the R-peak, 100 samples before and 200 sample after the R-peak, this ensures a heart beat to be confined to this region of 1.2 seconds with a sampling rate of 250Hz. Then this heartbeat is decomposed into three overlapping parts: a part before the QRS complex (ending one line before the R peak), a small region (150 samples wide) around the QRS, and a part after the QRS complex (starting one line after the QRS peak).

Fig. 1 Segmenting the adaptively approximated ECG signal

B. Adaptive Piecewise Constant Approximation

Adaptive Piecewise Constant Approximation (APCA) approximates each time series by a set of constant value segments of varying lengths such that their individual reconstruction errors are minimal. Given a time series $C = \{c_1, \ldots, c_n\}$, we need to be able to produce an APCA representation, which we will represent as:

$$C = \{(c_{v_1}, c_{r_1}), \ldots, (c_{v_M}, c_{r_M})\}, \quad c_{r_n} = 0 \quad (1)$$

Where c_{v_i} are the mean value of data points in the i_{th} segment and c_{r_i} the right endpoint of the i_{th} segment.

The algorithm first takes the problem onto a wavelet domain compression problem, for which optimal solutions are already known, then converts it back to the ACPA representation and might even make some minor modifications. It uses the fact that the Haar wavelet transformation of a time series signal can be calculated in $O(n)$, and that an optimal reconstruction of the signal for any level of compression can be obtained by sorting the coefficients in order of decreasing normalized magnitude, and then truncating the smaller coefficients. If the segments in the reconstructed signal have approximate mean values, they will be replaced by the exact mean values to get a valid APCA representation as described in Equation 1.

Fig. 2 A time series C and its APCA representation C, with $M = 4$ [1]

C. The PDDTW Algorithm

After the preprocessing, we now have a large set of adaptive approximations of heartbeats, each of them decomposed into three regions. Next, we have to select those points among the endpoints of these waveforms which are most likely the fiducial points we are looking for. This task is solved by the Piecewise derivative dynamic time warping (PDDTW) algorithm.

Piecewise Derivative Dynamic Time Warping (PDDTW), takes advantage of the fact that we can efficiently approximate most time series by a piecewise aggregate approximation [13] and use a derivative distance measure in order to reduce singularities and extracting higher level features [14]. In order to align two sequences Q and C, we first derive a reduced dimension of Q and C which we denote \overrightarrow{Q} and \overrightarrow{C} respectively. Then we construct an N-by-M matrix where the (i_{th}, j_{th}) element of the matrix contains the distance $d(\overrightarrow{Q}, \overrightarrow{C})$ between the two elements \overrightarrow{Q} and \overrightarrow{C}.

Next similar to [14] we choose the distance measure $d(\overrightarrow{Q}, \overrightarrow{C})$ not Euclidean but rather the square of the difference of the estimated derivatives of \overrightarrow{Q} and \overrightarrow{C}. We use the following estimate for simplicity and generality to computing derivatives.

$$D_i(\overrightarrow{Q}) = \frac{(\overrightarrow{Q}_i - \overrightarrow{Q}_{i-1}) + (\overrightarrow{Q}_{i+1} - \overrightarrow{Q}_i)/2}{2} \quad (2)$$
In order to obtain such a matching, this path can be found very efficiently using dynamic programming to evaluate the following recurrence which defines the cumulative distance γ(i,j) as the distance d(i,j) found in the current cell and the minimum of the cumulative distances of the adjacent elements:

\[\gamma(i,j) = d(Q_i, C_j) + \min \{ \gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1) \} \] (3)

The warping path which minimizes the warping cost becomes:

\[PDDTW(Q, C) = \min \left\{ \sum_{i=1}^{m} w_i \gamma(i,j) / \sqrt{c} \right\} \] (4)

Where the compression ratio c is the ratio of the length of the original time series to the length of its Piece wise aggregate approximation. Because the length of the warping path is measured in the same units as DTW we have:

\[PDDTW(Q, C) \cong DTW(Q, C) \] (5)

The time complexity for a PDDTW is \(O(nm)\), while the time complexity for the original DTW algorithm is \(O(nm)\). So the speedup obtained by PDDTW should be \(O(nm)/O(MN)\) which is \(O(c^2)\).

Once we have found the minimal path connecting the two waveforms, we can use this path to detect the variations in the ECG, which combined generate 400 possible heartbeats.

D. Choosing the Appropriate Reference Heartbeat

Before aligning the heartbeats we need a reference heartbeat. Due to the high variability between different heartbeats, it would acquire a very large database in order to capture all range of possibilities. Instead, similar to [5] we selected a small set of QRS(8), P waves (5), and T waves (10) to reflect the variations in the ECG, which combined generate 400 possible heartbeats.

The main difference between this approach and equation (3) is the addition of an extra layer:

\[\gamma(i,j) = d(Q_i, C_j) + \min \{ \gamma(i-1, j-1, k), \gamma(i-1, j, k), \gamma(i, j-1, k) \} \]

Where k represent the layer (from one to the number of waves, which is 5, 8, and 10, respectively). In the overlapping we select the previous distance over all previous layers.

In the case where we don’t have a waveform but instead we have noise, sometimes a match is made between a reference wave and the noise. To diminish this we set a threshold of 7 samples as the minimum distance between a P or T top and its onset or offset. If this is not the case, annotations of the wave will not be considered.

III. RESULTS

The single-lead TD detector was applied to the second lead signal of every record and one set of annotations were produced for each record. The results are shown in Table I.

TABLE I EVALUATION RESULTS, COMPARING THE AUTOMATIC WAVEFORM. THE LAST THREE COLUMNS ARE REPRODUCED FROM [2]. MEAN AND STANDARD DEVIATION ARE IN MILLISECONDS

<table>
<thead>
<tr>
<th></th>
<th>Our Method</th>
<th>Laguna’s Method</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beats Me</td>
<td>SD</td>
<td>Beats Me</td>
</tr>
<tr>
<td>(P_{on})</td>
<td>1821 7.23</td>
<td>17.79</td>
<td>2596 10.26</td>
</tr>
<tr>
<td>(P)</td>
<td>1834 3.21</td>
<td>13.47</td>
<td>2626 -0.48</td>
</tr>
<tr>
<td>(P_{end})</td>
<td>1834 2.43</td>
<td>15.01</td>
<td>2627 -5.73</td>
</tr>
<tr>
<td>(QRS_{on})</td>
<td>2710 -5.22</td>
<td>3.60</td>
<td>3130 -9.32</td>
</tr>
<tr>
<td>(QRS_{end})</td>
<td>2710 -2.13</td>
<td>11.24</td>
<td>3130 -3.64</td>
</tr>
<tr>
<td>(T_{on})</td>
<td>410 -11.62</td>
<td>28.6</td>
<td>1241 -16</td>
</tr>
<tr>
<td>(T)</td>
<td>2246 -4.76</td>
<td>29.86</td>
<td>2932 23.26</td>
</tr>
<tr>
<td>(T_{end})</td>
<td>2246 6.72</td>
<td>33.46</td>
<td>2996 18.68</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

We have verified and validated our method for automatic ECG segmentation using beats from 95 different records. By taking advantage of dimension reduction techniques such as Piecewise aggregate approximation and Adaptive piecewise constant approximation we significantly speed up our algorithm both in the preprocessing and segmentation stage.

The results show that the mean error from our method is comparable to Laguna’s, sometimes even better, yet the standard deviation is a little bit higher. As the segmentation was solely on the second lead, we cannot measure the positive predictivity of the method.

We conclude that for single-lead wave boundaries detection, our proposed method is robust enough to give measures comparable to those given by experts. We could further expand this method to two leads, in which for each record to sets of annotation file would be created. First, we would analyze annotations from one channel, and when evaluation results in a record were disappointing with this channel’s annotations, results in the other channel would be studied.
REFERENCES

