Abstract—In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.

Keywords—Heat transfer, Radiation effect, Shrinking sheet

I. INTRODUCTION

Shrinking sheet boundary layer flow problem has attracted many researchers due to its applications such as the shrinking film which is used in packaging of bulk product. Wang [1] was the first to study the shrinking sheet problem by considering the case of stretching deceleration surface. Later, Miklavcic and Wang [2] proved the existence and uniqueness for steady viscous flow due to a shrinking sheet. Wang [3] also studied the stagnation flow towards a shrinking sheet, by considering two-dimensional and axisymmetric stagnation flows. Other related published papers studied the steady boundary layer flow problems induced by shrinking sheets in various aspects can be found in [4] – [7].

To date, many researches have been done on unsteady boundary layer problems due to a stretching surface. Namely, Surma Devi et al. [8] and Lakshmisha et al. [9] studied unsteady three-dimensional boundary layer flow over a stretching surface. Ali et al. [10] investigated the unsteady uniform flow across a stretching surface in an arbitrary direction, where the unsteadiness is caused by the impulsive motion of the stretching surface. While, Abd El-Aziz [11] added radiation effect to the flow over an unsteady stretching sheet and reported that for larger Prandtl number, the effect of radiation parameter becomes more significant. On the other hand, only a few studies have been reported on the problem of unsteady boundary layer flow due to a shrinking sheet. The unsteady boundary layer flow due to a shrinking sheet with mass transfer has been considered by Fang et al. [12] and this idea has been extended by Ali et al. [13] to the case of rotating fluid. Further, Ali et al. [14] included the radiation effect in their study and dual solutions were reported for non-zero radiation. Recently, Midya [15] investigated the effect of radiation and heat sink on heat transfer in MHD boundary.

The present paper aims to study the problem of unsteady stagnation-point flow and heat transfer across a shrinking sheet with radiation effect is taken into consideration. The transformed equations are solved numerically using the shooting method. To the best of our knowledge, the present problem has not been considered before, thus the reported results are new.

II. BASIC EQUATIONS

Consider the unsteady stagnation-point flow of a viscous and incompressible fluid towards a shrinking sheet which at time $t = 0$ starts impulsively or suddenly from rest. Following Wang [3], it is assumed that the unsteady potential stagnation-point flow at infinity is given by $u_0(\bar{r}, x) = (1 - \lambda \bar{T})^{-1} ax$ and $w_0(\bar{r}, x) = (1 - \lambda \bar{T})^{-1} az$, where a is the strength of the stagnation flow, $\bar{T} = at$ is the dimensional time and λ is a parameter associated with the flow unsteadiness. It is also assumed that on the stretching surface, the velocity are $u_w(\bar{r}, x) = b(1 - \lambda \bar{T})^{-1}(x + c)$ and $w_w(\bar{r}, x) = 0$, where b is the stretching rate (shrinking if $b < 0$) and $-c$ is the location of the stretching origin. The governing unsteady boundary layer equations are

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial z^2}$$

(1)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \frac{\partial^2 v}{\partial z^2}$$

(2)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \frac{\partial^2 w}{\partial z^2}$$

(3)

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial z^2} - \frac{1}{\rho c_p} \frac{\partial q_r}{\partial z}$$

(4)
where \((u,v,w)\) are the velocity components along the axes \((x,y,z)\), \(T\) is the fluid temperature, \(\nu\) is the kinematic viscosity, \(\rho\) is the fluid density and \(c_p\) is the specific heat of the fluid at a constant pressure. The initial and boundary conditions are

\[
\begin{align*}
T < 0 : u &= v = w = 0, T = T_0, \text{ for any } x, y, z \\
T \geq 0 : u &= u_0 (T, x) = (1 - \lambda T)^{-1} b(x + c) \\
w &= 0 = v_0 (y, t), T = T_w \text{ at } z = 0 \\
u &= u_0 (T, x) = (1 - \lambda T)^{-1} ax, \\
w &= w_0 (T, z) = -(1 - \lambda T)^{-1} az, \\
T &\to T_{0x} \text{ as } z \to \infty
\end{align*}
\]

where \(T_{0x}\) is the ambient temperature and \(T_w(x)\) is the surface temperature.

Using the Rosseland approximation for radiation (Raptis et al. [16] or Bataller [17], the radiative heat flux \(q_r\), is simplified as

\[
q_r = -\frac{4\sigma^* T^4}{3k^*} \frac{\partial T}{\partial z}
\]

(7)

where \(\sigma^*\) and \(k^*\) are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. It is assumed that the temperature differences within the flow such that the term \(T^4\) may be expressed as a linear function of temperature (see Cortell [18]. Hence, expanding \(T^4\) in a Taylor series about \(T^\infty\) and neglecting higher order terms, we get

\[
T^4 \approx 4T_0^3 T - 3T_0^4.
\]

(8)

In view of (7) and (8), (5) reduces to

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \left(\alpha + \frac{16\sigma^* T_0^3}{3\rho c_p k^*} \right) \frac{\partial^2 T}{\partial z^2}
\]

(9)

where \(\alpha = k / \rho c_p\) is the thermal diffusivity of the fluid. It is seen from this equations that the effect of radiation is to enhance the thermal diffusivity. If we take \(N_R = 16\sigma^* T_0^3 / (3kk^*)\) as the radiation parameter, (9) becomes

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha (1 + N_R) \frac{\partial^2 T}{\partial z^2}.
\]

(10)

III. TWO-DIMENSIONAL CASE

Following Wang [3] and Surma Devi et al. [8], we introduce the similarity transformations

\[
\begin{align*}
u &= (1 - \lambda T)^{-1} \left[axf'(\eta) + b cf(\eta) \right], v = 0, \\
\theta &= (1 - \lambda T)^{-1/2} \left[f(\eta) \right], \\
\eta &= \left(a \right)^{1/2} \left(1 - \lambda T \right)^{-1/2} z.
\end{align*}
\]

(11)

Substituting (11) into (2), (3) and (10), we obtain the following coupled ordinary differential equations:

\[
\begin{align*}
f'' + \left(f' \right)^2 + 1 - f' &= 0, \\
g'' + fg' - f g - A^2 g &= 0, \\
\left(\frac{1}{\gamma} + \frac{1}{P_r} \right) \theta' + f^2 - A \frac{\eta}{2} &= 0.
\end{align*}
\]

(12)

(13)

(14)

subject to the boundary conditions

\[
\begin{align*}
f(0) &= 0, f'(0) = b / a = \gamma, g(0) = 1, \theta(0) = 1, \\
f'(\infty) &= 1, g(\infty) = 0, \theta(\infty) = 0.
\end{align*}
\]

(15)

where \(A = \lambda / a\) is the unsteadiness parameter, \(P_r = \nu / \alpha\) is the Prandtl number, \(\gamma\) is the stretching/shrinking parameter where \(\gamma > 0\) refers to a stretching case and \(\gamma < 0\) corresponds to the shrinking case and primes denote differentiation with respect to \(\eta\). The pressure \(\rho\) can be recovered by

\[
\frac{P}{\rho} = \frac{P_0}{\rho} \left(1 - \frac{\lambda T}{\lambda} \right)^{-2} \left(\frac{A^2}{2} \frac{x^2}{2} + \nu \frac{\partial w}{\partial z} + \frac{\partial \varphi}{\partial t} \right) dz
\]

(16)

where \(P_0\) is the stagnation pressure. It is worth mentioning that when \(N_R = 0\), the thermal radiation's effect is not considered in (14).

For this flow, the normalized streamlines \(\varphi\) can be defined as

\[
\varphi = \left(1 - \lambda T \right)^{-1/2} \left[x f(\eta) + \gamma c_0 g(x) ds \right]
\]

(17)

where \(\varphi = \varphi / (a v)^{1/2}\) with \(\varphi\) is defined in the usual way as \(u = \partial \varphi / \partial z\) and \(v = -\partial \varphi / \partial x\). The physical quantities of interest are the skin friction coefficient \(C_f\) and the local Nusselt number \(Nu\), which are defined as
where the skin friction τ_w and the heat flux q_w are defined as

$$
\tau_w = \frac{\partial u}{\partial z}, \quad q_w = -k \frac{\partial T}{\partial z}
$$

with μ and k being the dynamic viscosity and thermal conductivity, respectively. Using (11), (18) and (19), we get

$$
Re_x^{1/2} C_f = f''(0) + \frac{bc}{u_e} f'(0), \quad Re_x^{1/2} Nu = -\theta'(0)
$$

where $Re_x = u_w x / v$ is the local Reynolds number based on the shrinking sheet velocity u_w.

IV. RESULTS AND DISCUSSION

Equations (12), (13) and (14) subject to the boundary conditions (15) have been solved numerically using the shooting method as described in a paper by Meade et al [19]. In order to check the accuracy of the result obtained, comparison with those of Wang [3], [20] are made, as shown in Table I (for stretching sheet) and Table II (for shrinking sheet), where Table II also shows the second (dual) solutions. The agreements between the comparison results are very good.

TABLE I

<table>
<thead>
<tr>
<th>γ</th>
<th>$f''(0)$</th>
<th>$g'(0)$</th>
<th>$\theta'(0)$</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.23259</td>
<td>-0.81130</td>
<td>0.51545</td>
<td>Wang [20]</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1466</td>
<td>-0.86345</td>
<td>0.51545</td>
<td>Wang [3]</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0511</td>
<td>-0.91330</td>
<td>0.53437</td>
<td>Present</td>
</tr>
<tr>
<td>2.0</td>
<td>0.7133</td>
<td>-1.05239</td>
<td>0.58767</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>0.0011</td>
<td>-1.25331</td>
<td>0.66756</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>-1.8873</td>
<td>-1.58957</td>
<td>0.80478</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>-10.2647</td>
<td>-2.3381</td>
<td>1.12213</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>γ</th>
<th>$f''(0)$</th>
<th>$g'(0)$</th>
<th>$\theta'(0)$</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.40224</td>
<td>-0.66857</td>
<td>0.44340</td>
<td>Wang [3]</td>
</tr>
<tr>
<td>1.0</td>
<td>1.49567</td>
<td>-0.50145</td>
<td>0.38439</td>
<td>Present</td>
</tr>
<tr>
<td>1.5</td>
<td>1.48930</td>
<td>-0.29376</td>
<td>0.31547</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.32882</td>
<td>0</td>
<td>0.22833</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.08223</td>
<td>0.297995</td>
<td>0.15510</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.55430</td>
<td>0.99904</td>
<td>0.04966</td>
<td></td>
</tr>
</tbody>
</table>

Further, Table III displays the skin friction coefficient, $f''(0)$, skin friction coefficient, $g'(0)$ and also the heat transfer coefficient $-\theta'(0)$ for various A when $\gamma = -0.5$, $N_R = 3$ and $Pr = 0.7$. It is found that unsteadiness has increased the surface shear stress, which in turn increases the heat transfer coefficient.

TABLE III

<table>
<thead>
<tr>
<th>A</th>
<th>$f''(0)$</th>
<th>$g'(0)$</th>
<th>$-\theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7</td>
<td>(-0.46860)</td>
<td>(-0.62115)</td>
<td>(-0.62216)</td>
</tr>
<tr>
<td>-1.0</td>
<td>(-1.93081)</td>
<td>(-5.41045)</td>
<td>(8.83243)</td>
</tr>
<tr>
<td>-1.5</td>
<td>(0.15402)</td>
<td>(0.21065)</td>
<td>(0.28569)</td>
</tr>
</tbody>
</table>

Fig. 1 Variation of the skin friction coefficient, $f''(0)$ with A for different values of N_R when $\gamma = -0.5$ and $Pr = 0.7$

Fig. 2 Variation of the heat transfer coefficient, $-\theta'(0)$ with A for different values of N_R when $\gamma = -0.5$ and $Pr = 0.7$.

In this present study, Figs. 1 and 2 display the skin friction coefficient and the heat transfer rate at the surface for all N_R and A, respectively, when γ and Pr are fixed. As $|\gamma|$ increases, $f''(0)$ decreases, however $-\theta'(0)$ increases until...
the critical (turning) point, \(A_c = -1.7719 \). No solutions have been found for \(A_c > -1.7719 \) due to boundary layer starts to separate from the sheet. Hence, beyond this value, the boundary layer approximation is no longer valid. Therefore, the full Navier-Stokes equation need to be used. Figs. 1 and 2 also show the existence of the dual solutions for the case of non-zero radiation, \(N_R = 0 \). It is worth mentioning that normally the first (upper branch) solutions are physically stable and this can be verified by performing a stability analysis. Unfortunately, this analysis is beyond the scope of the present paper and such analysis can be found in Merkin [21] and Weidman et al. [22]. The value of \(f''(0) \) is not affected by the radiation parameter since the flow is not affected by \(N_R \), as shown in Fig. 1. This phenomenon can be explained by (12). While in Fig. 2, it is observed that the heat transfer rate at the surface found to reduce with \(N_R \).

Fig. 3 Velocity profiles for different values of \(A \) when \(\gamma = -0.5 \), \(N_R = 3 \) and \(Pr = 0.7 \)

Fig. 4 Velocity profiles for different values of \(\gamma \) when \(A = -1 \), \(N_R = 3 \) and \(Pr = 0.7 \)

Figs. 3 and 4 show the velocity profiles for various \(A \) and \(\gamma \), respectively, when other parameters are fixed. Both figures show that the velocity profiles reduce as \(A \) and \(\gamma \) increases, respectively and broaden the boundary layer thickness. Fig. 5 shows the \(g \) profiles for various \(A \). It is found that the \(g \) profiles increase with \(A \).

Figs. 6 to 8 illustrate the temperature profiles for various \(A \), \(\gamma \), \(Pr \) and \(N_R \), respectively. It is observe that as \(A \), \(\gamma \), \(Pr \) and \(N_R \) increases, the temperature profiles decreases, as well as the thermal boundary layer thickness. The surface temperature gradient also increases that causes increases in surface heat transfer rate. Physically, when \(Pr \) increases, the fluid has lower thermal conductivity, which in turn reduce conduction, thus reduces the thermal boundary layer thickness. From Fig. 8, it is also observed that the temperature profiles become less significant when \(N_R \) increases. Figs. 3 to 8 also show the dual profiles to prove the dual nature of the problem and all the profiles satisfy the far field boundary conditions (15).
A study is performed for the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect. It is observed the existence of the dual solutions for the shrinking case. In this study, it is found that the thermal boundary layer thickness reduced with the unsteadiness and shrinking parameters and also with the Prandtl number and radiation parameter. The temperature profile is affected the most by the Prandtl number.

V. CONCLUSION

The authors gratefully acknowledged the financial support received in the form of a fundamental research grant (FRGS) from the Ministry of Higher Education, Malaysia and research university grant scheme (RUGS) from Universiti Putra Malaysia.

ACKNOWLEDGMENT

The authors gratefully acknowledged the financial support received in the form of a fundamental research grant (FRGS) from the Ministry of Higher Education, Malaysia and research university grant scheme (RUGS) from Universiti Putra Malaysia.

REFERENCES

